How does mechanistic QSP modeling reduce R&D risk in data-poor disease areas such as central nervous system (CNS) diseases?

Christina Friedrich, Colleen Witt, Meghan Pryor, Katherine Kudrycki, Rebecca Baillie, Robert Sheehan, Michael Reed; Rosa & Co., LLC, San Carlos, CA

Problem Statement

- Neurodegenerative CNS diseases present unique challenges for drug development:
- Significant uncertainty about pathophysiology
- Slow disease progression
- Limited data and biomarkers
- How can mechanistic QSP models be useful under these conditions?

Methods

- Analyze QSP modeling projects in CNS diseases
- Identify attributes that allowed the modeling projects to support development decisions

Figure 1. An α-synuclein PhysioMap[®].

Research Question	What hypotheses of α-synuclein effects are consistent with data?
Context	Discovery, low risk, sparse data, high uncertainty, first-in-class
QSP Research Methods	Graphical model of known and hypothesized pathways In-depth discussions with client scientific experts
Actionable Results	Formulated novel hypotheses for uncertain aspects of α-synuclein function Suggested incisive experiments to test hypotheses, resolve uncertainties, and identify and prioritize potential targets

This poster and additional details about these case studies are at <u>https://www.rosaandco.com/publications</u>.

Conclusion

In data-poor diseases such as CNS, QSP modeling is ideally suited to **improve scientific understanding**, systematically explore hypotheses, prioritize experiments, and **de-risk** next steps.

٦e	Tł	•
ŀ	0	
(0	
ŀ	0	
6		
0	M	•
I	0	
(0 0	
 () 	0 0 0	
	0 0 0	
	0 0 0 0	
	0 0 0 0	

Results

- e successful CNS QSP projects shared attributes: Appropriate scoping and framing
- Opportunity to direct empirical experiments
- Appropriate expectations improved understanding and more confident next steps vs. predictive precision
- ost useful modeling approaches:
- n-depth scientific discussions
- Quantitative integration of disparate data
- Hypothesis exploration using what-if simulations
- Sensitivity analysis to identify material uncertainties
- Virtual patients to explore impact of variability
- Extrapolation from biomarkers to disease scores