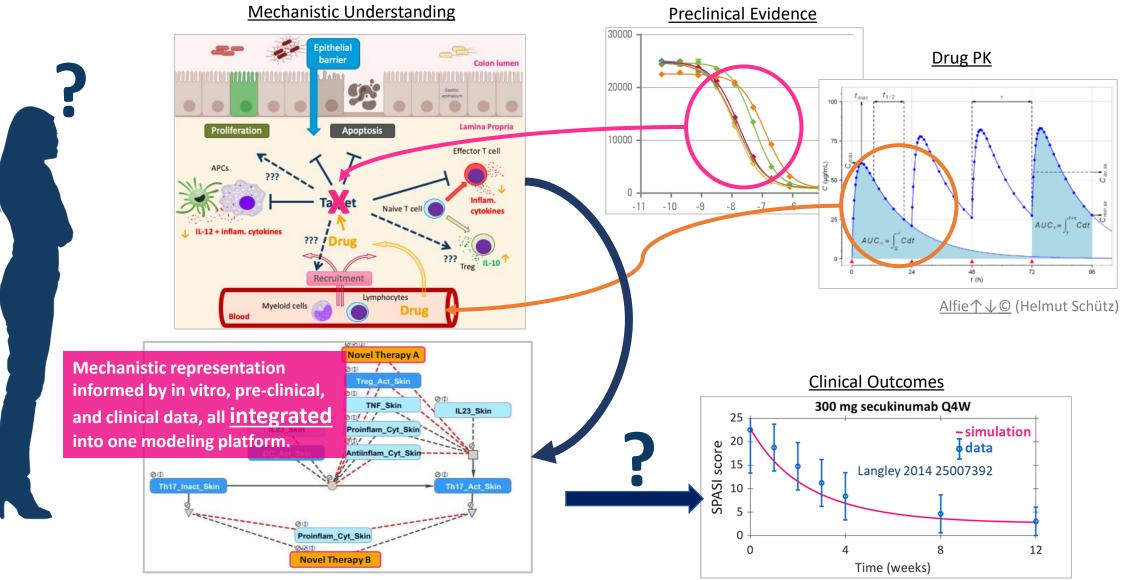
Scaling New Heights

Session : Bridging from mechanistic QSP models to subjective or complex clinical outcomes: challenges and approaches


Chairs: Michael C. Weis, PhD

Using mechanistic quantitative systems pharmacology (QSP) models to connect biomarkers to clinical disease activity scores – examples in dermatology and chronic inflammatory diseases areas

> Vincent Hurez, DVM, PhD ROSA

November 2020

How to use QSP to bridge the gap between pre-clinical data, PKPD models and relevant clinical trials outcomes?

Disease scores are more or less complex, involving multiple objective and subjective measurements.

Robarts histopathology index (ulcerative colitis)

- $RHI = 1 \times chronic inflammatory infiltrate level (4 levels)$
 - + 2 \times lamina propria neutrophils (4 levels)
 - + 3 \times neutrophils in epithelium (4 levels)
 - + 5 \times erosion or ulceration (4 levels after combining

Geboes 5.1 and 5.2).

DAS28, SDAI score (rheumatoid arthritis)

Formulae to calculate the different DAS and SDAI score

Score	Formula
DAS28	0.56*sqrt(28TJC) + 0.28*sqrt(28SJC) + 0.70*ln(ESR) + 0.014*pt global VAS
DAS28-3	[0.56*sqrt(28TJC) + 0.28*sqrt(28SJC) + 0.70*ln(ESR)]*1.08 + 0.16
DAS28-CRP	0.56*sqrt(28TJC) + 0.28*sqrt(28SJC) + 0.36*ln(CRP+1) + 0.014* pt global VAS + 0.96
DAS28-CRP-3	[0.56*sqrt(28TJC) + 0.28*sqrt(28SJC) + 0.36*ln(CRP+1)] * 1.10 + 1.15
SDAI	28TJC + 28SJC + CRP/10 + pt global VAS/10 + phys global VAS/10
CDAI	28TJC + 28SJC + pt global VAS/10 + phys global VAS/10

EASI score (atopic dermatitis)

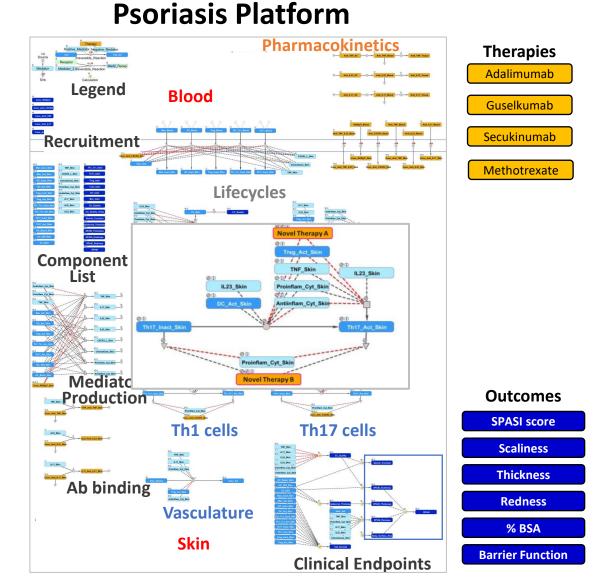
Table 1. Eczema area and severity index: calculation for patients 8 years of age and older¹

Body region Head/Neck (H)	EASI Score ^{2,3} (E+I+Ex+L)×Area×0.1
Upper limbs (UL)	$(E+I+Ex+L) \times Area \times 0.1$ $(E+I+Ex+L) \times Area \times 0.2$
Trunk (T)	(E+I+Ex+L)×Area×0.3
Lower limbs (LL)	(E+I+Ex+L)×Area×0.4
EASI =	Sum of the above 4 body region scores

¹For children aged 0–7 years, proportionate areas were head/neck, 20%; upper limbs, 20%; trunk, 30%; and lower limbs, 30%.

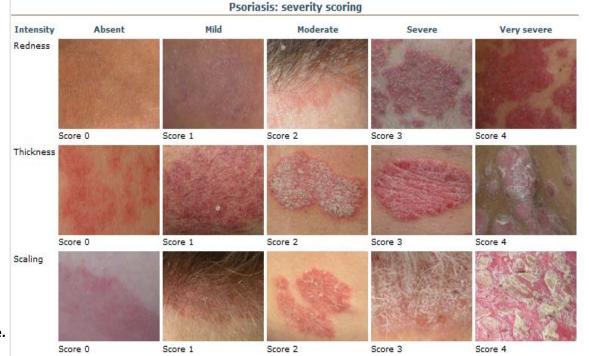
 ${}^{2}E$ =Erythema, I=induration/papulation, Ex=excoriation, L=lichenification. ³Where area is defined on a 7-point ordinal scale: 0=no eruption; 1=<10%; 2=<10%-29%; 3=<30%-49%; 4=<50%-69%; 5=<70%-89%; and 6=>90%-100%.

Hanifin 2001 PMID 11168575

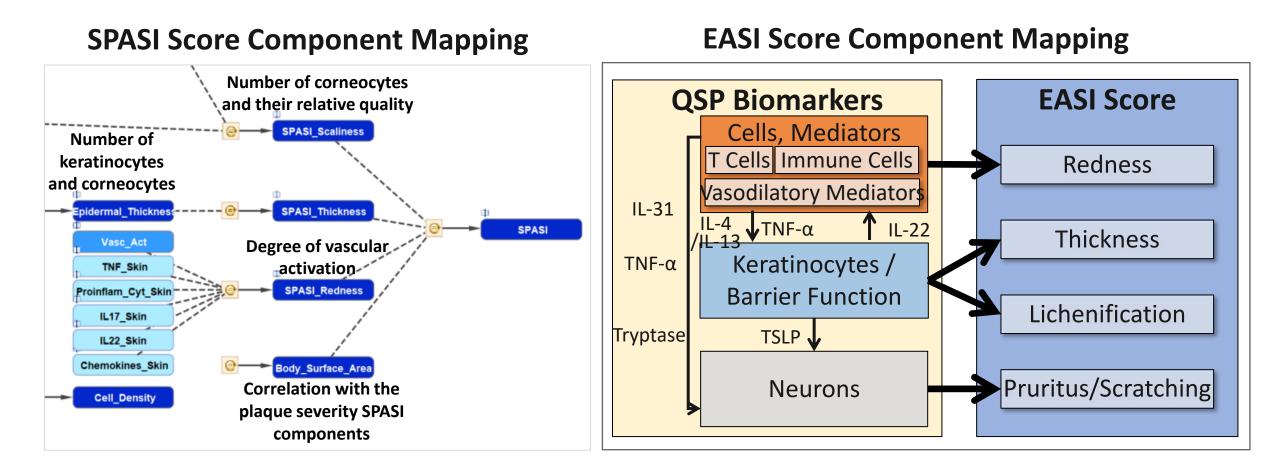

Quantitative biomarker (# of affected joints, CRP levels)
Subjective measurement

Vander Cruyssen 2005 PMID 16207323

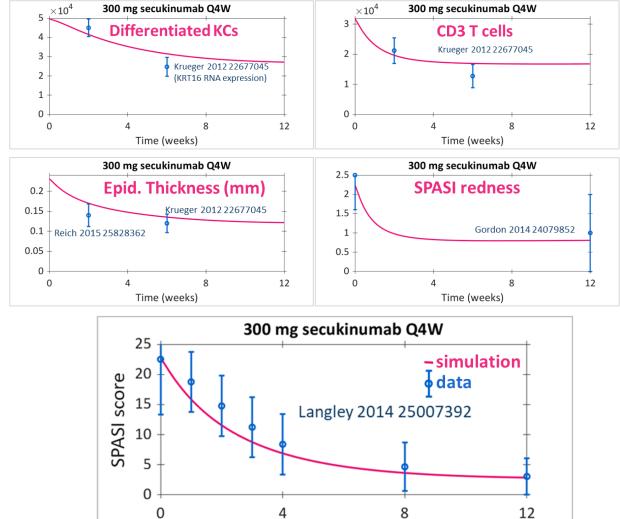
Systematic Process Used by Rosa ROSA


1. Develop QSP model connecting mechanisms to measurable biomarkers

- The goal of the fit-for-purpose QSP model is to address a specific research question
- Model components necessary to represent target MOA and disease pathophysiology are prioritized
- Discussions with the scientific team inform inclusion of relevant biomarkers, therapies and calculations of defined endpoints

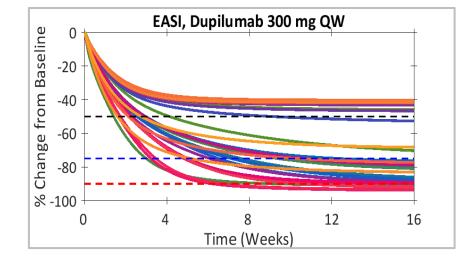

2. Identify relevant and practical disease scores and their critical clinical subscores components

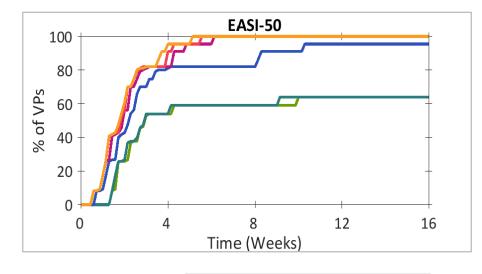
- PASI score $PASI = 0.1 \cdot (E_H + I_H + D_H) \cdot A_H + 0.2 \cdot (E_A + I_A + D_A) \cdot A_A + 0.3 \cdot (E_T + I_T + D_T) \cdot A_T + 0.4 \cdot (E_L + I_L + D_L) \cdot A_L$
 - Body divided into four sections (Head, Arms, Trunk, Lower)
 - percent of body surface area (% BSA) involved estimated (A_H, A_A, A_T, A_L)
 - Severity estimated by three clinical signs measured on a scale from 0 to 4
 - Erythema (redness)
 - Induration (thickness)
 - Desquamation (scaling)

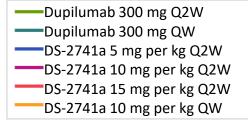

Examples of redness, thickness, and scaling used in a PASI score. (http://www.dermnetnz.org/scaly/pasi.html)

3. Map disease score components to QSP model species or biomarkers

4. Fit parameters for outcome calculations to match published/proprietary clinical data


- Calibrate QSP model parameters to match changes in mediators and cell numbers with therapies
- Calculate disease score components parameters to match changes in disease subscores
- Integrate disease subscore components into overall clinical score, adjusting parameters if necessary, to match clinical data




Time (weeks)

5. Use simulated clinical score outcomes to compare efficacy of new drugs to SOC therapies in virtual patients

EASI score (atopic dermatitis)

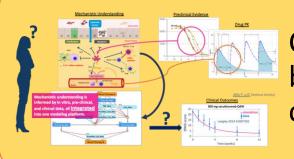
Remaining challenges and limitations

Challenging Clinical Endpoints for QSP

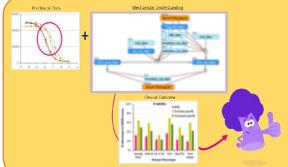
Solution Used in QSP Projects

- Trial results expressed as % of patients reaching a specific clinical response criteria (ACR20, EASI-50, RECIST,...)
- Discrete events (flares, nausea, asthma attacks,...)
- Progression-free survival in oncology
- Cognitive outcomes in neurological disease

Build a prevalence weighted virtual patient


Cohort using detailed individual patient data from existing clinical trial

➔ Use a statistical threshold model based on correlation with a continuous outcome


Identify, with clinicians' help, alternate

endpoints that can help answering the specific research question

Key Take Home Messages

Complex scores can be simulated in QSP models, if a link between model biomarkers and the disease subscores can be established and calibrated with clinical data.

The capacity of a QSP Platform to report clinically relevant disease scores allows broader adoption of QSP modeling throughout clinical organizations.

Acknowledgments

- Michael Weiss
- Christina Friedrich
- Katherine Kudrycki
- Rebecca Baillie
- Mike Reed
- Bobby Sheehan
- Meghan Pryor
- Douglas Chung

J SANOFI

- M. Rehberg
- K. Beuke
- A. Dietrich
- B. Göbel
- N. Biesemann
- C. Asbrand
- A. Subramaniam
- W. Seiz
- M. Herrmann
- T. Klabunde
- F. Nestle

- Shinnosuke Yamada
- Naoki Kiyosawa
- Masatoshi Nishimura
- Ryo Atsumi
- Kiyoshi Morimoto

November 2020