Mathematical modeling and analysis using MATLAB and SimBiology to support drug development

Fulden Buyukozturk^{1,*}, Christina Friedrich² ¹MathWorks, Inc., Natick, MA; ² Rosa & Co LLC, San Carlos, CA; *Presenter

Introduction

Increased adaption of Quantitative Systems Pharmacology approaches in drug development [1]

drug

Sensitivity analysis to identify key pathways

SimBiology includes functions and apps to perform common tasks in systems modeling

In silico experiments: the effect of differences in physiology on therapy

Early and thorough *in* Reduce development *silico* testing of cost and time candidates

- Increased adoption necessitates flexible and extensible computational tools.
- We present SimBiology, a MATLAB toolbox, as a flexible and extensible tool to streamline systems modeling and analysis in drug discovery and development.
- **Objective:** Demonstrate the utility of SimBiology in exploring a combination therapy approach to improve clinical response to Rheumatoid Arthritis (RA) therapy.

Communicating complex

- Both programmatic and interactive analysis tools
- **Simulation** to predict system behavior
- Sensitivity analysis to identify significant biological pathways
- **Parameter estimation** to fit models to data

Running a sensitivity analysis task

- You can use MATLAB scripts to automate • simulations and create custom analyses.
- Simulate Virtual Patients (VPs) to investigate different hypotheses about the model.

Running SimBiology models from a MATLAB script

SimulateVirtualPatients.m 🗶 🕂								
1	%% Load Model							
2		Load model						
3 -	<pre>sbioloadproject('RAModel', 'm1') ;</pre>							
4	P. Coloct onti INE Docing							
5	%% Select anti-INF Dosing							
7 -	dose - shioselect(m1 'Name' 'antiTNE 50mg 0/W') ·							
8	dose - sprosereer(mr, Mame, antrini_Somg_Q4W / ,							
9	%% Select variants							
10			Choose different model					
11	% Get model's variant storing Virtual Patient representations							
12 -	<pre>variants = sbioselect(m1, 'Name', {'VP0', 'VP1', 'VP2'});</pre>							
13 -	nVariants = length(variants);							
14								
		-						
33	%% Simulation Setup	_						
34								
35	% Get configuration settings							
36 -	cs = getconfigset(m1) ;							
37	0 Cat armaling times							
38	% Set sampling times							
<u> </u>	nTPoints = numel(t0hs); % nours Create a function to							
41 -	cs.SolverOptions.OutputTimes = tObs :							
42		execute the m	odel					
43	% Create simfunction							
44 -	<pre>sf = createSimFunction(m1, pNamesAll, {'Macrophage Act'.'Leaky Vessel'}, dose, 'UseParallel'. true) :</pre>							
45	· · · · ·							
46	%% Simulate for each Virtual Patient							
47								
48 -	<pre>speciesNames = {'Macrophage_Act','Leaky_Vessel'};</pre>							
49 -	<pre>nSpecies = lengtn(speciesNames);</pre>							
50	« Cet dose table							
52 -	a det dose table dExp = getTable(dose)							
53								
54	<pre>% Simulate without anv treatment</pre>	Simulate the r	nodel					
55 -	<pre>sd1 = sf(variants, [], [], t0bs);</pre>							
56 -	<pre>ResponseNoTreatment = [sd1.Data];</pre>	scanning acro	ISS VMS					
57		-						

disease physiology models

- Graphical representation of complex models helps with the collaboration among modelers and between modelers and non-modelers.
- **Drag and drop model diagram** in SimBiology facilitates rapid development and effective communication of models.
- Both programmatic and graphical ways of model building.

SimBiology implementation of a dynamic model of Rheumatoid Arthritis treatment [2]

- Results indicate differences in time scales
- Early driver: inflammation; late driver: \bullet angiogenesis

Parallel simulations for

- The combination treatment improves patient outcomes.

improved performance

You can perform large-scale computations using multicore desktops, clusters, grids, and clouds.

6	Preferences		0	2	🖄 Community
. 6	Set Path Add-Ons	He	do	📑 Request Support	
	Parallel 👻	✓		•	🔜 Learn MATLAB
	Default Cluster		>		Demo17a18Workers
er c	r Discover Clusters		~	local	
, P	Parallel Preferences Manage Cluster Profiles			MathWorksPublic	
N				MATLAB Parallel Cloud	

VP3 benefits more than others.

References

- Gadkar, K., Kirouac, D.C., Mager, D.E., van der Graaf, P.H., Ramanujan, S., A Six-Stage Workflow for Robust Application of Systems Pharmacology, CPT Pharmacometrics Systems Pharmacology, 5, 235, 2016.
- 2. Rheumatoid Arthritis (RA) PhysioPD[™] Platform developed by Rosa & Co LLC.

Accelerating the pace of engineering and science

