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ü A calibrated AD QSP model incorporating a 
detailed representation of Aβ and tau 
production, aggregation, transport and 
clearance was developed. The model 
facilitates a quantitative assessment of the 
effects of several therapeutic agents in 
development on biomarker dynamics via in-

silico predictions. 
ü The model provides a platform to 

quantitatively evaluate drug delivery and 
target engagement in the brain and CSF. 
The model can be leveraged to evaluate the 
disease from a mechanistic perspective as it 
progresses longitudinally.

• Alzheimer’s disease (AD) is a progressive neurodegenerative brain 
disease that gradually destroys memory and cognitive skills1.

• AD is the most common cause of dementia among older adults. An 
AD afflicted brain is shown to have accumulation of abnormal 
protein clumps (plaques) and tangled fibers (neurofibrillary 
tangles)1.

• Our objective was to develop a comprehensive quantitative 
systems pharmacology (QSP) model of (AD) pathologies to assess 
the impact of investigational treatments in support of drug 
development in this progressive neurodegenerative disease with a 
high unmet medical need.

The comprehensive QSP model based on ordinary differential 
equations (ODE) includes the two defining features of AD pathology: 
Aβ production and aggregation to form dense plaques, and tau 
hyperphosphorylation, aggregation, spreading, and formation of 
neurofibrillary tangles (NFTs)1. Detailed features of the model 
include:
• Regulated Aβ40 and Aβ42 production and secretion, including 

BACE1 and γ-secretase activity
• Aβ monomer aggregation into oligomers, fibrils, and plaques with 

mixed Aβ42 / Aβ40 composition
• Aβ clearance by protein degradation, receptor-mediated uptake, 

phagocytosis, active and passive transport
• Peripheral production of Aβ
• Tau production, hyperphosphorylation, aggregation, NFT 

formation, and extracellular spreading
• Hypothesized regulation of tau pathology by Aβ
• Active and passive transport of soluble Aβ and tau species 

between brain interstitial fluid (ISF), cerebrospinal fluid (CSF), and 
plasma

• Representation of both ApoE4 carrier and non-carrier status
• Antibody PK and binding to Aβ or tau species and consequent 

impact on Aβ or tau pathology
Software: SimBiology (R2017b), a MATLAB® based application was 
used for the implementation of the model. Calibration and 

Qualification: Initial conditions and parameters were informed by 
literature and in-house preclinical and clinical data. Biomarkers and 
endpoints were compared to clinical data. Qualification was informed 
by Rosa’s Model Qualification Method.2

Biomarkers and Endpoints: (a) Fluid biomarkers (Aβ and Tau), (b) 
Aβ PET SUVR, (c) Tau PET SUVR
Therapies/Interventions: (a) Aβ targeting agents: solanezumab, 
crenezumab, aducanumab and gantenerumab. (b) Tau targeting 
agents (anti-tau antibody)
Key Assumptions and Limitations: Neuronal cell population and 
protein production is assumed to be constant. Brain ISF is modeled 
as a single well-mixed compartment. The model does not attempt to 
translate biomarker dynamics to cognitive endpoints at this stage.
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Figure 1 Overview of the AD QSP Model Schematic 
depicting major scope components and pathways.
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Figure 2 Model fitted versus observed plasma concentration-time profiles a. crenezumab3-5; b. aducanumab6
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Figure 3 Model fitted/predicted versus observed percent change in Aβ PET SUVR a. gantenerumab7-8; b and c. aducanumab6,9
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Figure 4 Simulated profiles of target 
neutralization in brain (interstitial fluid volume 
= 242 ml) after administration of 
solanezumab, crenezumab, aducanumab, and 
gantenerumab at their clinical doses as flat 
dosing a. unbound Aβ monomers; b. unbound 
Aβ oligomers; c. unbound Aβ plaques. 
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Figure 5 Patient phenotype-
based model calibrated and 
simulated a. change in Aβ 
SUVR in brain upon 
treatment with plaque 
targeting antibody6; b.
percent change in tau SUVR 
over 12 months10.

The most abundant data for Aβ and tau 
come from post-mortem brains from 
deceased moderate to severe (mod/sev) 
AD patients. A prodromal AD phenotype 
was then developed representing an 
earlier version of the same AD patient. In 
addition, the model includes patients with 
different ApoE4 carrier status. 
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Model slightly 
overpredicts 
effect at 18 
months; likely 
reflects the 
slightly lower 
reduction in 
Aβ PET 
observed in 
aducanumab 
Ph 3 vs 1b 
(due to lower 
cumulative 
dose)
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