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Introduction

e Virtual Patients (VPs) and Virtual Populations (VPops) are used to explore clinical variability and uncertainty in * Adapt parallel tempering (PTempEst) algorithm for
QSP modeling VPop generation

» Existing methods for improved VPop generation include Simulated Annealing, Genetic Algorithms, and * Evaluate and compare performance of Parallel
Metropolis Hastings [1] Tempering (PTempéEst), Simulated Annealing (SA)

and Metropolis-Hastings (MH) in terms of

* Parallel Tempering [2] is a well-established method for parameter estimation that enables more _ ,
convergence and sampling quality

complete/comprehensive sampling of complex, high-dimensional parameter spaces

* Propose PTempEst as a viable alternative for
accelerating VPop development by assessing its

m computational cost and goodness of fit relative to
existing methods

 Here, an implementation of Parallel Tempering for VPop|generation is compared to Simulated Annealing and
Metropolis Hastings for a published model

A published MAPK signaling model was used for

A reference virtual patient was developed as the starting point for the virtual populations.

evaluation of the three VPop algorithms.
- A reference virtual patient was calibrated to match average tumor growth in the mouse xenograft data across
RTK . ) _ Growth_Factor |
i S e treatments [4]
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The Parallel Tempering algorithm was adapted for development of virtual populations.

* Parallel tempering was configured with 4 parallel MCMC chains at different temperatures

 Uniform prior distributions were assumed for parameter sampling
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* Each chain was set to “swap” following 25 MCMC steps

 Each “swap” represents a unique virtual patient in the virtual population

Published Simulated Annealing and Metropolis-Hastings algorithms were modified for use with the MAPK

signaling model.

Figure 1. PhysioMap® of the MAPK signaling model. PTempEst code and
the QSP model were implemented in MATLAB® / SimBiology®. * Implementations for Simulated Annealing and Metropolis-Hastings were previously published for use with a
* A published MAPK model was adapted to describe lipoprotein metabolism model [1]
mouse xenograft tumor growth [3] * The cost function for the Simulated Annealing algorithm was configured to optimize within data bounds for
e A set of 14 parameters known to impact tumor the xenograft treatment protocols
growth were selected for variation in the VPops * Similarly, the cost function in the Metropolis-Hastings algorithm was adapted to score based on the fit to a
* Published mouse xenograft data for three multivariate normal distribution of the three xenograft data outcomes
treatment protocols (untreated, KRASi, and SHP?2i)
were used to calibrate the populations m

All three algorithms showed a reasonable match to observable target data ranges.
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Figure 2. Virtual population simulations compared to xenograft data [3].

All three algorithms showed comparable goodness of fit for observable outcomes.
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 Empirical CDFs for tumor volume were compared
to the uniform CDF for each treatment protocol to
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Figure 3. Empirical CDFs showing distribution comparisons across algorithms for the tumor volume readout.

Conclusions

Parallel Tempering demonstrated significant time savings compared to the other algorithms.

Time per VP Comparison . . .
® 15 . , , , , * Parallel Tempering offers a competitive alternative
5 * Time per VP (total simulation time/total # to other established methods for virtual

Figure 4. . . .
2 10x | | ble VPs) is compared relative to Parallel : :
o Time per VP Plausl P
£ . . _ population generation
< ri'fatl'l‘;ﬁ 0 Tempering for each algorithm . i . o
5 : - * Parallel Tempering significantly improves efficiency
S {empering. * Parallel Tempering showed cost savings up to 15x L - - - TP,
T in virtual population generation while maintaining
" PTempEst MH A goodness of fit
Method

REFERENCES

1] Rieger T, et al. Improving the generation and selection of virtual populations in quantitative systems pharmacology models. Progress in Biophysics and Molecular Biology. (2018)

2] Gupta, S, et al. Evaluation of Parallel Tempering to Accelerate Bayesian Parameter Estimation in Systems Biology. Proceedings—26th Euromicro Intl Conf on Parallel, Distributed, and Network-Based Processing. (2018)
3] Sayama H, et al. Virtual clinical trial simulations for a novel KRASG12C inhibitor (ASP2453) in non-small cell lung cancer. CPT Pharmacometrics Syst Pharmacol. (2021)

4] Sheehan R, et al. Parallel Tempering for Generation of Virtual Patients and Virtual Populations in QSP Models [Poster abstract]. ACoP2024. (2024)

WWW.rosaandco.com

For more information about
this work, please contact:

Mike Reed
Rosa & Co LLC
mreed@rosaandco.com



mailto:mreed@rosaandco.com

	Slide 1

