

Development of a Quantitative Systems Pharmacology Platform to Support Translational Research and Clinical Development in Immuno-Oncology

B. J. Schmidt¹, D. W. Bartlett², S. Agrawal¹, M

ABSTRACT

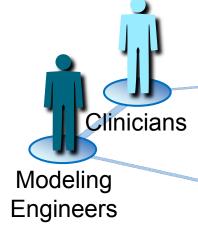
Background: Mechanistic models capable of integrating datasets from the molecular, cellular, and tissue level to provide research predictions of tumor response are wellpositioned to play a central role in translational research and clinical development for the emerging immuno-oncology therapeutic paradigm. The availability of calibration and validation data from clinical trials from the first successful immuno-oncology therapies such as ipilimumab and nivolumab (including CA184004, MDX1106-03, CA209004, CA209009) facilitates comparison of the simulated outcomes with clinical data.

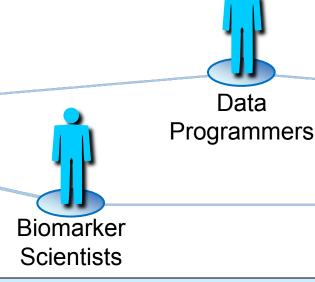
Methods: A multidisciplinary team developed the biological scope of a mechanistic, ordinary differential equation-based simulation platform. The initial platform focuses on the interactions of multiple immune cell types, cancer cells, soluble mediators, cell-cell contact effects, checkpoint engagement effects, as well as ipilimumab and nivolumab therapies within the microenvironment of a prototypical simulated lesion and their effect on tumor shrinkage.

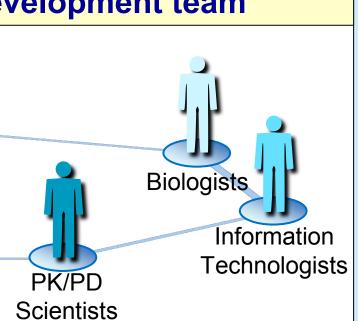
Results: The platform was calibrated, taking into account nivolumab and ipilimumab plasma concentrations, circulating absolute lymphocyte counts, trends in tumor cytokines, an IFN-γ gene expression signal, changes in tumor infiltrating lymphocytes, and lesion size data. In agreement with clinical observations, an enhancement in lesion response was observed with the combination therapy.

Conclusion: The platform recapitulates essential immune response pathways in a simulated lesion and exhibits qualitative agreement with patient response phenotypes to immuno-oncology agents. Having demonstrated proof-ofprinciple with a preliminary calibration, the platform will serve as a framework to facilitate biomarker identification, integrate additional therapeutic mechanisms, propose new combination strategies, and serve as a sub-model within a broader simulation framework for the cancer-immunity cycle.

BACKGROUND


- >A new class of immune-stimulating agents show great promise for the treatment of cancers that have not responded well to other therapies. Ipilimumab, the first biologic from the field of immuno-oncology, was approved by the FDA in 2011 for treating metastatic melanoma. Nivolumab monotherapy was approved by the FDA in 2014.
- > Immuno-oncology agents relieve checkpoint-mediated suppression of the immune response exploited by cancer or bind directly to activating receptors on the surface of immune cells to stimulate anti-tumor responses [1].
- > New immuno-oncology therapies are being developed, and mounting clinical evidence suggests combinations of immunotherapies will be an especially powerful treatment option. For example, an objective response at 1-year has been reported in over 50% of melanoma patients treated with a combination of ipilimumab and nivolumab [2]. A 2year overall survival rate of 88% has been reported for patients receiving a concurrent regimen of 1 mg/kg nivolumab plus 3 mg/kg ipilimumab [3].
- > Quantitative Systems Pharmacology (QSP) approaches facilitate key steps, outlined below, in drug development [4], which will also accelerate the successful development of new immuno-oncology therapies and treatment regimens.
 - Target identification
 - Knowledge integration
 - > Identification of knowledge gaps and hypothesis generation
 - > Evaluation of new therapeutic combinations


METHODS: Model development team

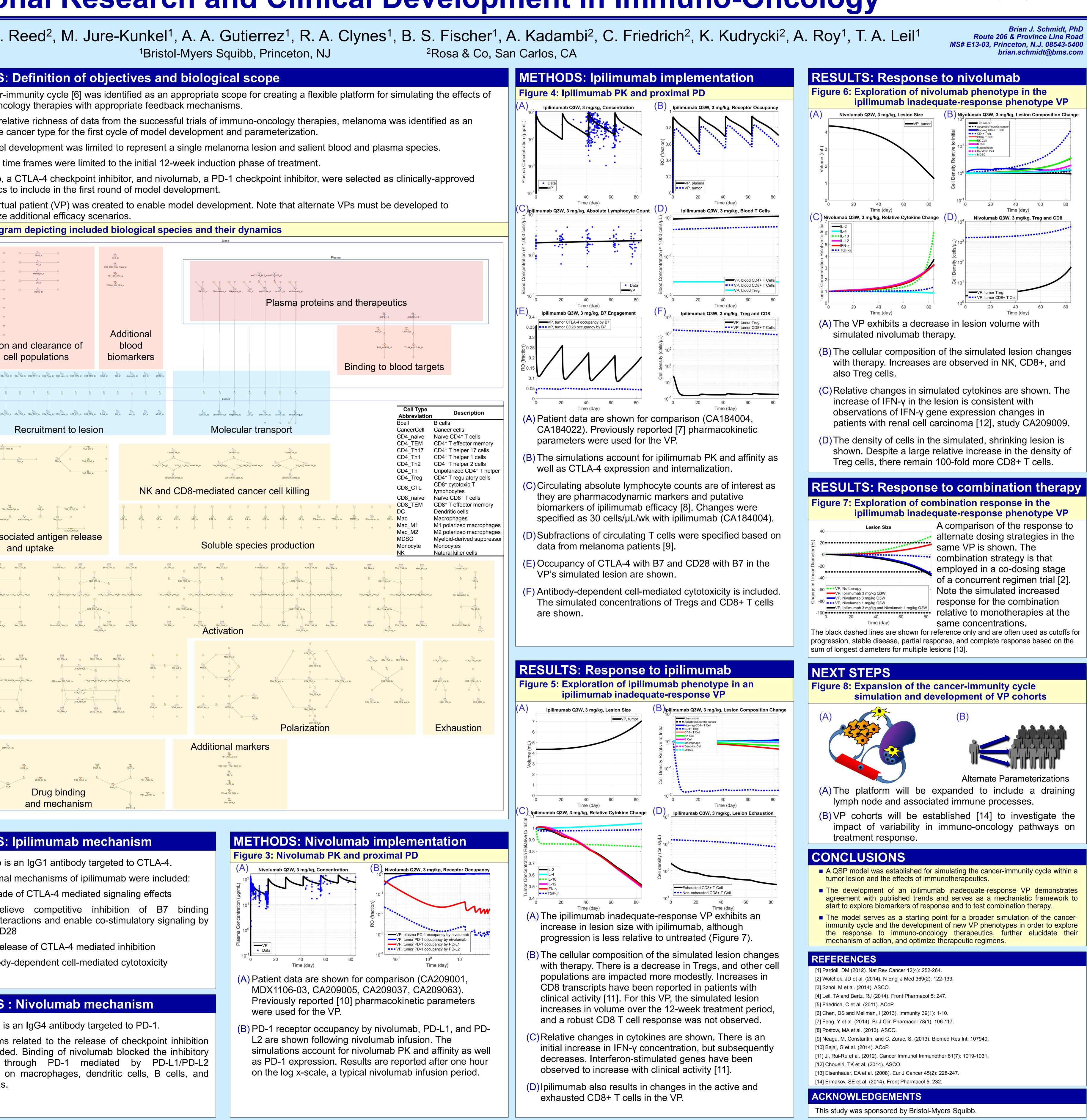

- >A cross-function team of drug development scientists defined the QSP model scope and modeling objectives.
- > In addition to the core platform development team, subjectmatter experts contributed in an ad-hoc fashion [4] to prioritize putative mechanisms for inclusion. Preclinical and clinical data sets, along with information from over 500 publications, were used to inform the platform design.
- > The model was constructed in accordance with Rosa's Model Qualification Method [5] to ensure fit for purpose.

Data

Figure 1: Expertise represented on development team

a	var, ivi.	
	ETHODS The cancer	
	immuno-on Given the re	(
	appropriate	ļ
	Simulation	t
	 Ipilimumab, therapeutic 	
	A single virt characteriz	e
- I	gure 2: Diag	-
	CD4_naive_bl	-
	CD4_Th1_bl	-
	CD4_Treg_bl	- - - -
	Production blood	
	CD4_naive_bi CD4_Th_bi CD4_TEM_bi CI	
•		
	CD4_naive_tu CD4_Th_tu CD4_TEM_tu CI	04
	CancerCell_tu CancerC	
	т	A
	TAA_antiCag_Cancer	
	DC_TAA_tu BCell_TAA	_t
		Т
	CD4_Th_act_tu	
	DC_TAA_tu BCell_TAA	_t
	DC_TAA_tu BCell_TAA_ CD4_naive_tu #	tu
	CD4_naive_DC_TAA_tu CD4_naive_BCell	_Т
	CD4_TEM_tu	tu
	0	I
	CTLA4_antiCTLA4_tu CTLA4_tu CTLA4_b7_tu	
	B7_PDL1_tu	
	ETHODS	
	IpilimumabTwo proxim	
	≻ Blocka ≻ Re	
	int CE	(
	≻Re ≻Antiboo	
		-

METHODS : Nivolumab mechanism


cancer cells.

¹Bristol-Myers Squibb, Princeton, NJ

cancer type for the first cycle of model development and parameterization.

time frames were limited to the initial 12-week induction phase of treatment.

es to include in the first round of model development.

Nivolumab is an IgG4 antibody targeted to PD-1. > Mechanisms related to the release of checkpoint inhibition were included. Binding of nivolumab blocked the inhibitory signaling through PD-1 mediated by PD-L1/PD-L2 expressed on macrophages, dendritic cells, B cells, and

