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Objectives Background 

Both statistical (e.g., NLME) and mechanistic, 
physiological (systems biology ODE models based on 
physical laws and physiological knowledge, PhysioPD 
in the Rosa & Co practice) modeling methods can be 
used to support decision-making in drug discovery and 
development. There is a lack of clarity in the field 
about which method is appropriate under what 
conditions. The authors systematically reviewed ten 
examples from their modeling disciplines in similar 
therapeutic areas to address the research questions. 

To compare and contrast NLME modeling 
and mechanistic physiological (PhysioPD™) 
modeling in these dimensions: 

(1) What questions can be addressed? 

(2) What data are needed? 

(3) How are hypotheses used and tested? 

(4) How is confidence built in each kind of 
model? 

Case Goal / Questions Addressed Data Used Hypotheses Used and Tested Confidence Built By… 
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Diabetes project 
supporting 
compound 
development at 
preclinical / 
early clin. stage.1 

 

• Will MoA of drug class 
be efficacious? 

• What compound 
properties to optimize? 

• How does rat translate 
to human? 

• Physiological knowledge of diabetes 
• Understanding of target role in diabetes 
• Public literature  and summary clinical data on 

other diabetes drugs 
• In vitro binding and preclinical data for new 

compound 

• Virtual patients constructed to represent 
disease pathophysiology hypotheses 

• Hypotheses about how drug-induced 
signal combines with endogenous used to 
test effects on predicted outcomes  

  

• Following Model Qualification Method2 
• Conservation of mass (here: nutrients) 
• Qualitative data – virtual patients 

behaved well under many protocols 
• Matched data for related compounds 

Understanding 
ursodiol  dosing in 
the treatment of 
cholestasis in 
neonates.  Early 
to late clinical.3 

 

• What 
accounts 
for 
clearance 
variability? 

• Public literature on bile acid 
metabolism 

• Metabolomic data  of all bile acid 
species Ursodiol (drug) 
concentration in plasma 

  

• Sensitivity analysis revealed pathways 
that could cause clearance variability 

• Literature confirmed polymorphisms 
consistent with clearance hypothesis 

• Following Model Qualification Method 
• Mechanistic representation predicted ursodiol 

concentration profile 
• SNPS evidence supports conclusions 

Understanding and improving  
in- vitro tests to be more predictive 
for neuropathic pain.  Discovery. 

• Why do current in vitro 
models fail to predict 
neuropathic pain? 

• How could models be 
improved? 

  

• Public data on ion channels, 
neurotransmitters, channel 
blockers, pain response, elec-
trophysiology of other drugs 

• Proprietary electrophysiology 
data 

• Standard assumptions about nocioception, transmission, 
and modulation were tested – some not correct 

• Novel hypotheses about drug action and physiology were 
confirmed or rejected  

 

• Reproduced and explained 
current assay’s failure modes 

• Modeling lead to biological 
insight that scientists bought 
into 

Prediction of skin sensitization 
potential for novel chemicals.  
Preclinical safety assessment.4 

• What are the key biological pathways 
driving sensitization? 

• What assays predict human response? 

• Public data on sensitization mechanisms 
• Known chemicals tested using local lymph node 

assay (LLNA) in mouse 

• Virtual chemicals to explore 
implications of unmeasurable 
compound properties 

• Predictive assays must be robust 
to these uncertainties 

  

• Model represented known biology 
• Matched sub-system and whole system data 
• Reproduced and explained LLNA data 
• Led to novel biological insights5 

• Dealt explicitly with uncertainty 

Identification of new serologic 
markers for rheumatoid arthritis 
(RA) severity using an in silico 
model of the rheumatic joint.6  Late 
clinical. 

• What novel serologic marker can give 
insight into disease severity? 

• For model, public data about 
RA joint biology and patho-
physiologies 

• For markers, serum samples 
from two populations 

  

• 120 virtual patients with 
different pathophysiologies 

• Biomarker hypotheses 
tested empirically 

• Model represented known biology 
• Matched data at sub-system and whole system level 
• Virtual patients matched data for marketed therapies and 

had appropriate qualitative behaviors 
• Biological rationale for biomarker was scientifically sound 

and confirmed experimentally 
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Hematological 
toxicity model.7 
Post-clinical. 

 

• Develop mechanistic 
model to describe 
chemotherapy-induced 
myelosuppression   

• Separate system- and 
drug-related parameters 

• Clinical data containing neutrophils and PK 
information for 6 different cancer drugs 

• Physiological knowledge on neutrophils life cycle 

• System parameters are consistent across different drugs  
• Their estimates resemble physiological values 
• Model mechanisms mimic physiology  
• Drug effect parameters  are robust 

• Formal statistical tests 
• Goodness of fit graphical diagnostics 
• Estimated parameters are physiologically plausible 
• Predictive checks 
• Parameter uncertainty 

Hepatitis C 
Viral Kinetic 
Model.8  Late / 
post-clinical. 
 

 

• Develop mechanistic 
model to describe 
interplay between HCV 
virus, host and tx 

• Implement cure/viral 
eradication boundary  

• Clinical data from 2100 patients (one phase 2 and 
three phase 3 studies) 

• Physiological knowledge on HCV dynamics  and 
infection 

• Complex  mechanistic interplay between HCV virus, host 
and drug effect 

• Viral eradication/cure boundary is essential to describe 
different virus dynamics/profiles 

• Importance of left censored data implementation 

• Formal statistical tests 
• Goodness of fit graphical diagnostics 
• Estimated parameters are physiologically plausible 
• Predictive checks 
• Parameter uncertainty 
• External validation to predict clinical outcome (SVR) 

Prolactin Release Model following 
Risperidone and Paliperidone 
Treatment.9 Early to post-clinical. 
 

• Develop mechanistic model to describe 
interplay between prolactin, dopamine  
and risperidon/paliperidone in 
schizophrenic and healthy subjects 

• Compare prolactin increasing effect of 
risperidon and paliperidone 

 

• Clinical data from 
1462 subjects (five 
phase 1 and four 
phase 3 studies) 

• Dopamine and 
prolactin physiology 

• Diurnal rhythm of prolactin 
• Dopamine production rate controlled by prolactin feedback 
• Competitive agonist-antagonist interaction model describes 

drugs vs. dopamine competition for D2 receptors   
• Different mechanisms for describing relationships of interest 
• Covariate effects of demographic and genetic covariates 

• Formal statistical tests 
• Goodness of fit graphical diagnostics 
• Estimated parameters are physiologically plausible 
• Predictive checks 
• Parameter uncertainty 
• External validation to predict new dataset 

Individualization of 
Warfarin tx by 
pharmacogenetics 
and age using a 
PKPD model.10  

Late / post-clinical. 

 

• Quantify relationship 
between warfarin con-
centration & INR response 

• What are important 
predictors for dose 
individualization? 

• Clinical data from 140 patients containing PK, PD, 
pharmacogenetic and demographic information 

• Knowledge on warfarin PK and pharmacogenetic 
influence 

• Physiology of coagulation mechanism 

• CYP2C and VKORC1 genotype plays important role in 
warfarin CL 

• VKORC1 genotype plays important role in INR response 
• Demographic covariates (Age) affect warfarin CL 
• Time delay between warfarin dosing and INR response 

• Formal statistical tests 
• Goodness of fit graphical diagnostics 
• Estimated parameters are physiologically plausible 
• Predictive checks 
• Parameter uncertainty 

Pharmacogenetic – 
Pharmacokinetic analysis of 
efavirenz in HIV-1 infected 
patients11  Late / post-clinical. 

• What is the effect of 
multiple functional 
alleles on EFV CL? 

• Which gene-gene 
interaction is important 
for EFV elimination? 

 

• Clinical data from 169 
patients (PK, pharm-
cogenetics, demog.) 

• Knowledge on EFV PK, 
pharmacogenetic and 
toxicity 

• Demographic covariates (Age, BW, ethnicity, sex, height) 
affect EFV CL 

• CYP2B6, CYP2A6, CYP3A54, CYP3A5 pharmacogenetics 
affects EFV CL  

• Gene-gene interaction plays a role in EFV CL 
• Choice of gene interaction model is important  

• Formal statistical tests 
• Goodness of fit graphical diagnostics 
• Estimated parameters are physiologically plausible 
• Parameter uncertainty 
• Predictive checks 
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(1) Goals /  questions addressed:  NLME modeling is best suited to quantify and 
illuminate drug-related PK/PD processes and to separate/quantify different 
sources of variability in clinical and post-clinical stages. PhysioPD modeling is ideal 
for exploring mechanistic connections between pathophysiology, therapeutic PK 
and PD, and outcomes at any stage of discovery and development. 

(2) Data:  NLME models require clinical or pre-clinical data sets and are fully inferred 
from the data, with most model parameters being estimated; the model 
complexity is mainly determined by the data. Physiological knowledge is utilized to 
inform model structure.  PhysioPD models start with knowledge and hypotheses of 
biological processes and do not require detailed data sets for the drug of interest. 
Many types of data are used to inform and parameterize the models, which tend 
to be more complex as mechanisms are combined and their interactions explored. 

(3) Hypotheses:  The NLME modeling process is guided throughout by the hypotheses 
to be tested: for model building, addition of mechanistic components, covariate 
relationships etc. In PhysioPD models, scope is guided by the decision to be made, 
modeling uncovers knowledge gaps, and the models facilitate investigation of the 
systemic implications of alternative hypotheses.  

(4) Confidence: For NLME models, many tools are available to evaluate models 
internally and externally and assess goodness of fit. For physiological models, 
comparison to data is critical, with an emphasis on choosing data from many 
different data sets at the clinical and sub-system levels.  Additional criteria must be 
met to ensure that the model is relevant and adequately addresses uncertainty 
and variability (see Model Qualification Method, Fig. 3). 

Results Conclusions 

NLME and PhysioPD modeling methods are both used 
to illuminate relationships and test hypotheses.  
NLME methods require data sets specific to the 
research question at the individual subject or 
population level, while PhysioPD models draw from a 
variety of data sources to construct representations 
of biology informed by data and knowledge.  
Consequently, PhysioPD methods can be used earlier 
in discovery and development and tend to have more 
complex representations of mechanisms. 

Based on our exercise, we conclude that the methods 
are complementary. Additional work is under way to 
crisply define hand-off points and optimize overall 
use of modeling in drug discovery and development. 

Figure 2.  Select components of a PhysioPD model (disguised) 

investigating antibody dynamics.  

Figure 5. 

Selected 
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display two-
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appropriate 

for disease 

severity. 

Figure 7. 

Sensitivity 

analysis 

shows that 

varying 

transporter 

affects 

clearance. 

Figure 10. 

Comparison 
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recruitment 

hypothesis.5 

Figure 3. 
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Figure 11. Simulated synovial 

concentrations (in ng/ml) of two 

possible markers in 120 distinct 

virtual patients. Patients with 

erosion scores in lowest quartile 

(low) were compared with patients 

with erosion scores in highest 

quartile (high).6 
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Figure 8. Types of data used in building the model. 
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Figure 12. Hematological toxicity model structure.7 

Figure 13. 

Hepatitis C 

viral kinetic 

model 

schematic.8 

Figure 14. Schematic of model of prolactin release 

following risperidone/paliperidone treatment9 

Figure 16. 

Predicted 
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enzymes.11 

Figure 15. Model of INR response to warfarin10 
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Figure 4. 

A version 

of the 

diabetes 
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platform. 

Figure 1.  Select components of a NLME model. 
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