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An independent, global pharmaceutical group governed by a

non-profit foundation

150 countries
in which the Group’s medicines
~are distributed

315t largest pharmaceutical Group worldwide*
2" Jargest pharmaceutical Group in France*

Leader in cardiology

4% leading pharmaceutical group in cardiology worldwide*

22,500 employees

el leading pharmaceutical group in hypertension worldwide*

€4.7 billion Group revenue in 2019/2020 ~ Ambition to become

= Brand-name medicines: £3.3 billion arenowned and innovative player in oncology

= Generic medicines: €1.4 billion

More than 20% of Group brand-name revenue

€626 million EBITDA in 2015/2020 invested in R&D each year in average

*Source: IQVIA Analytics Link, MAT Q2-2021

R and D focus:

* Oncology
 Neurology

* |mmunoinflammation




*Al applications in support to drug development

O A pharmaceutical industry perspective

o Disease modeling applied to Sjogren syndrome (and Lupus)
o Implications for drug design and development

o High throughput drug discovery: the Patrimony platform

*In silico prediction of drug efficacy

O QSP model of an anti IFNa Mab in Lupus
o Causal disease representation (eqg Sjogren)

*Conclusions and perspectives




Artificial intelligence applied to challenges associated with

new drug development
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What Al can bring

* Integration of massive, multimodal, structured
and unstructured data
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* Creation of predictive models

e Support for decision-making

selecting the right therapeutic target, right drug-candidate and
right patient
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Computational precision medicine to relate patient and drug
knowledge spaces

Model-based
approaches

Drug design and _
development
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Al applications to new drug development

Disease modeling

Understanding disease
complexity and
heterogeneity

PATIENT STRATIFICATION

Design/optimization In silico evaluation of drug

Identification of therapeutic of drug candidates efficacy and safety

targets

Identification of dysregulated Identification of molecules interacting Digital twins, virtual patients,
genes/proteins/pathways involved in with target and with specific properties QSP, causal disease models
pathophysiology

SYSTEM BIOLOGY MULTITASK PREDICTION OF DRUG IN SILICO TRIAL SIMULATION
PROPERTIES



Systemic Lupus Erythematosus (SLE) :
a complex, heterogeneous auto-immune disease

Diverse clinical manifestations:
- Skin, joints, kidney, heart, lungs, central nervous system, blood, etc.

-Fatigue

Significant morbidity & socio economic burden
Survival after diagnosis ~ 95% (5yrs), 91% (10yrs), 78% (20yrs)

Current treatment options:

- Corticosteroids, antimalarials, immunosuppressors (Mycophenolate mofetil,
Methothrexate, cyclophosphamide, Azathioprine), anti B cells (Belimumab), anti-
IFNR MAb (Anifrolumab)

High residual unmet medical need

Skin Lungs Brain Heart

DRG, 2018. Tsokos, 2018.Tsokos, 2011. Durcan, 2019



Primary Sjogren Syndrome (pSS):.

a complex, heterogeneous auto-immune disease

Progressive autoimmune disease characterized by dry eyes, dry mouth
Immune infiltrates leading to destruction of lachrymal and salivary glands

Systemic manifestations involving musculoskeletal and nervous systems, lungs, kidneys, skin

and blood vessels
Significant quality-of-life impairment (fatigue)
Increased risk (16- to 44-fold vs general population) of developing lymphoma

Current treatments are symptomatic

High unmet medical need



Disease modeling to understand patient heterogeneity and identify

therapeutic targets: a system biology approach

Stratification of patients into Analysis of dysregulated molecular Selection of drug candidates
homogeneous subgroups (clusters) pathways and target identification interfering with therapeutic target(s)

»  Positioning of appropriate

Multi-OMICs drug candidates in patient
v @ profiling sub-populations (precision
- q.ﬁ 4 medicine)
.. w & |
., | » Design, selection,
optimization of molecules
interacting with the target
Cohorts of
patients with Stratification »  Design of combination
Lupus or Sjogren Ingenuity pathway analysis (IPA) therapies
syndrome
»  Repurposing of existing
- molecules
Clusterization of patients into endotypes - a - pe . =
reflecting pathophysiology " - 4 -u;] :] I[:I




Modeling autoimmune diseases following extensive molecular profiling

of patients
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CLINICAL DATA

Cohort of 2000 patients with SADs
including 382 pSS, 320 Lupus and
330 healthy volunteers
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A new molecular classification to drive precision
treatment strategies in primary Sjogren’s syndrome

Nature Com, 2021, 12: 3523
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Clustering of pSS patients
Based on RNASeq data from Whole blood

304 pSS patients
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Stratification of pSS patients in 4 homogeneous

molecularly defined clusters
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=>4 distinct clusters of pSS patients

defined by 3 gene modules

(hierarchical and k-means
clustering)
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Identification of dysregulated molecular pathways in

individual pSS patient clusters
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Functional annotation of each of 4 clusters of Lupus or Sjogren patients
leads to working hypotheses regarding candidate therapeutic targets

Heat maps from transcriptomics data in the blood Schematic representations of patient clusters
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From target to drug design and optimization

 Machine learning to train neural networks for predicting properties of small chemical molecules

Smiles transformation
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 Generative Al to enhance the chemical space

 Generation of new molecules
* Retrosynthesis
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Multitask parallel

prediction of:

v' binding to the target
(quantitative structure
activity relationship, free
energy prediction)

v absorption, metabolism,
distribution, excretion
toxicity

v stability...

Less molecules to synthesize
and test in wet labs

Nanome



EXPERT

OPINION

0N DRUG DISCOVERY

Industrializing Al-powered drug discovery: lessons
learned from the Patrimony computing platform 7

Mickaél Gued) et al, 2022
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Identify disease relevant targets
New disease targets
Repurposing
Combinations
Life cycle management

Selection of therapeutic
modality and drug candidate(s)

Small
molecule

ASO MAD

—

| Genetic || omics | Funcional

Key achievements since 2018
3 diseases modeled Sjogren & Lupus, 1 neurodegenerative disease
* 1 therapeutic project launched for Sjogren
* Proposal for existing drugs to be repurposed in severe COVID-19
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Model-based computational medicine to design combination
REVIEW therapies for autoimmune diseases

Desvaux E et al, 2021
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In vitro validation
= Gene expression

= |mmunophenotyping
» (CRISPR-Cas9 gene editing
=  SiRNA gene K.O

Tissue
signals module

A

In vivo validation

» Gene editing/silencing
» Tool compound

= Anti-CD40 O o”
=  Anti-ICOS Anti-CD20 (rituximab) O-o N
=  Anti-CXCR5 Anti-BAFF (belimumab) O oo

Immunosuppressors
(standard of care)

*  Immune checkpoints... In silico validation

» GeneK.O
= System perturbation
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Quantitative system pharmacology modeling to predict the efficacy of

an anti-lIFNoa Mab (S95021) in cutaneous Lupus

 Mechanistic, quantitative and dynamic model integrating data on biological processes, clinical
symptoms, drug characteristics (PK/PD modeling)

L Model based on a thorough analysis of the scientific literature + proprietary data

Pan neutralizing

anti-IFNa  Representation as differential mathematical equations of dynamic interactions between
monoclonal components
antibody

U Prediction of drug efficacy, identification of candidate BMKs, dose selection, virtual patients,
combination therapies

Molecular mediators

____________ = |FNA and IFNAR
= " Pro and anti inflammatory mediators
= Auto Abs, cytokines, chemokines

Cells
= |mmune cells
= Keratinocytes

Damage signals

Auto-Abs Physiological compartments R 0 S A :
= Blood

= Lymph Nodes
= Target tissue

Clinical outcomes
* Erythema, scaling, depigmentation...
(components of the CLASI A cutaneous scoring)



Quantitative System Pharmacology predicts the efficacy of the

S95021 drug candidate to treat cutaneous Lupus

QSP confirms the efficacy of the anti IFNR MAb Anifrolumab

(Astra Zeneca, registered to treat Lupus patients)
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Causal disease modeling of Sjogren in salivary glands by using

network computing

Down regulating ——
Up regulating -,

Modeling based on
transcriptomics data in salivary
glands of Sjogren vs Sicca
patients

Interactomes of genes with inferences of influence
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Sjogren in parotid glands Control parotid

e |dentification of master regulators (potential therapeutic targets)
 Computational perturbations to mimick the impact of single drug or combo therapies



Conclusions:
A revolution in new drug development

Supporting decision-making all along drug discovery and development

Shortening the timelines for the discovery phase

De-risking the choice of therapeutic targets and drug candidates

Decreasing the need for wet-lab experiments and clinical studies

Increasing probabilities of success while reducing costs

Regulatory acceptance of evidence generated by predictive modeling
* Interest of major agencies (eg FDA and EMA) in Model-Informed Drug development to Refine, Reduce and

Replace (3 R’s)
e Statement from US authorities (Committee on Appropriations, 2018):

« In silico trials protect public health, advance personalized treatment, can be executed quickly and for a
fraction of the cost of a full scale live trial »

'
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Artificial intelligence yields new antibiotic

A deep-learning model identifies a powerful new drug that can
kill many species of antibiotic-resistant bacteria.

From design to preparation of
phase 1 in one to two years

¢® Exscientia —

Announces First
Al-Designed
Immuno-
Oncology Drug to
Enter Clinical
Trials
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Perspectives: in silico prediction of drug efficacy as an

important dimension of computational precision medicine

Patient specificities understood Drug efficacy and safety predicted across Drug candidate properties predicted
patient heterogeneity
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