

Problem Statement

Introduction

- Virtual patients (VPs) are used within QSP modeling to explore the impact of variability and uncertainty on clinical response
- Combinations of parameter values that produce physiological solutions, i.e., valid VPs, are difficult to determine a priori, because of complex interdependencies in QSP models
- Sampling parameters, simulating protocols of interest, and then filtering out any non-physiological solutions is a common approach
 - Number of plausible VPs may be only a fraction of the generated VPs (<5%)
 - Requires time-consuming simulations to build a cohort of VPs that fully characterizes variability
- Machine learning (ML) surrogate models are a promising approach for improving efficiency of VP generation
 - Infers valid parameter combinations from preliminary QSP model simulations and "pre-filters" parameter sets based on predicted response values

Objectives

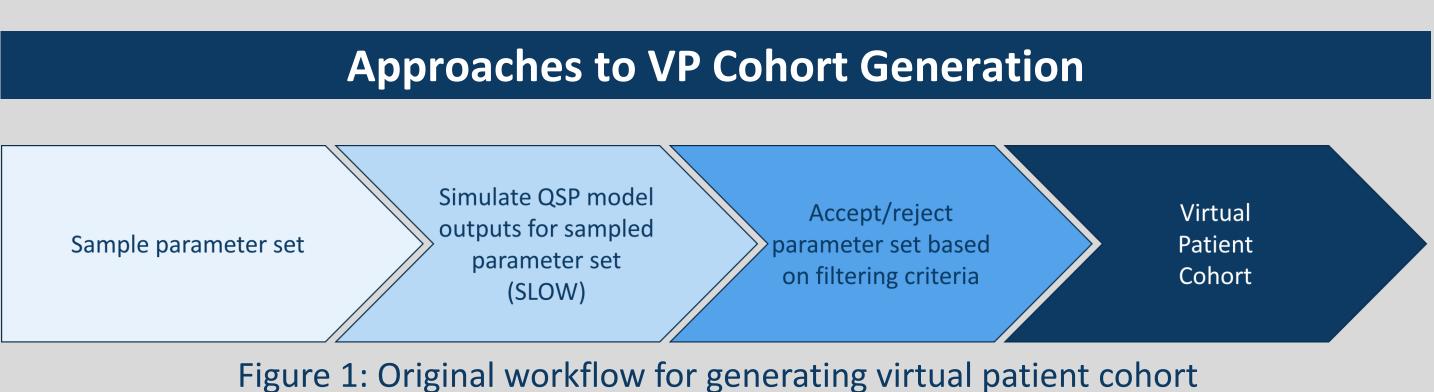
• Use machine learning surrogate models to improve efficiency of VP cohort generation in a psoriasis QSP model

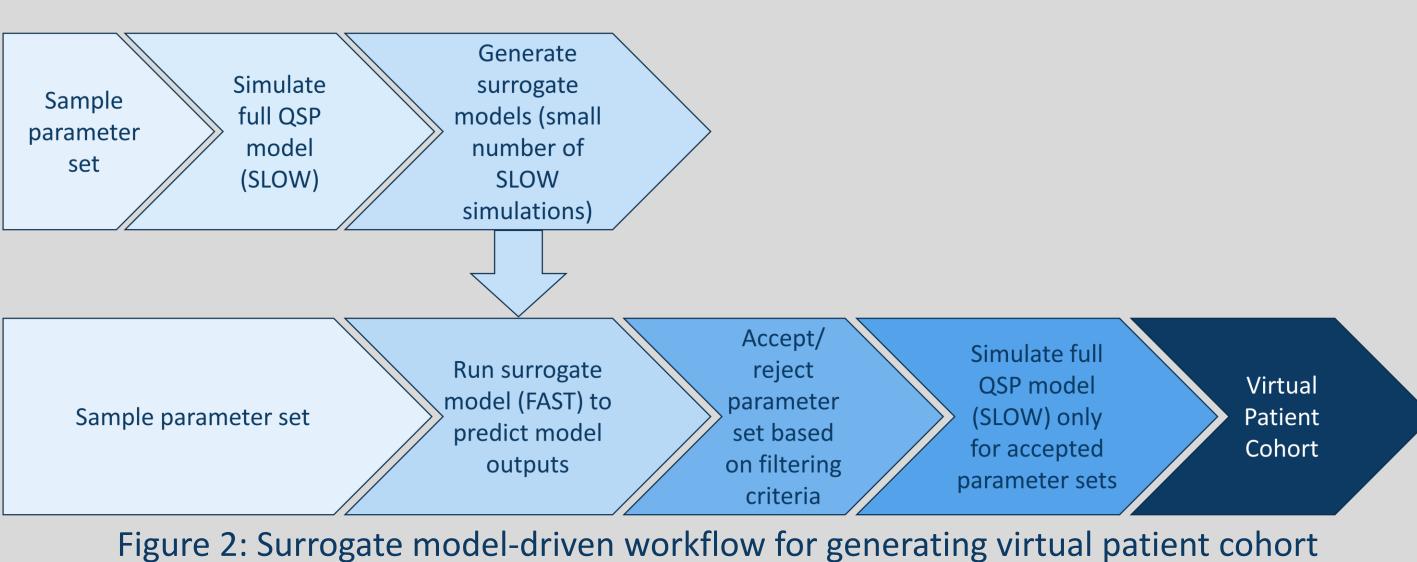
Conclusion

Use of surrogate models significantly increases efficiency over random parameter sampling for generation of VP cohorts with no loss of diversity.

Design

- Use existing psoriasis QSP model constructed in MATLAB[®]SimBiology[®]
 - 11 constrained model species, 5 varied parameters
- Use Gaussian Process Regression (GPR) as regression function to generate surrogate models
 - Evaluated several ML models using MATLAB[®] Regression Learner app; compared Root Mean Squared Error (RMSE) for each model type
- Train surrogate models with data (10,000 simulations) at a 70/30 partitioned split
 - Use QSP model to generate data for the regression function


Surrogate Modeling with Machine Learning for Faster Virtual Patient Cohort Generation in QSP Models


Renee Myers^{1*}, Christina Friedrich^{1*}, Tongli Zhang², Michael Weis¹. 1. Rosa & Co., San Carlos, CA 94070, USA 2. University of Cincinnati

Methods

Surrogate Modeling

- Surrogate model: Statistical model that approximates a complex, higher order model
 - Surrogate model is trained using input/output data obtained through simulation of the original model
- Surrogate models can be used to "replace" a mechanistic model that might be slow to simulate, yielding very fast predictions
- Surrogate models are a smarter approach to VP cohort generation • Simulation of QSP models: Computationally expensive; potential for many parameter sets to be rejected after filtering
 - Surrogate modeling approach: Instantaneously predict model output for a parameter set, accept/reject parameter sets based on filtering criteria

Efficiency of Method

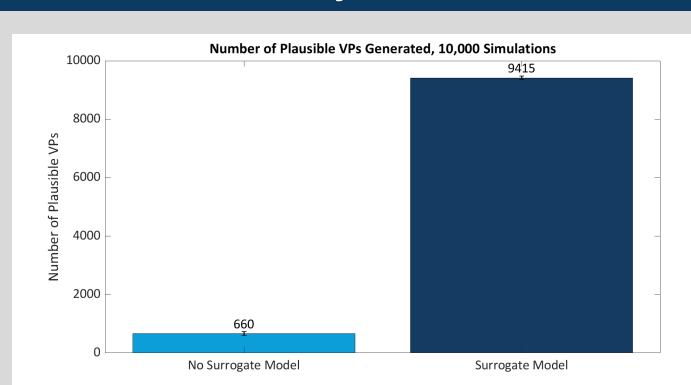
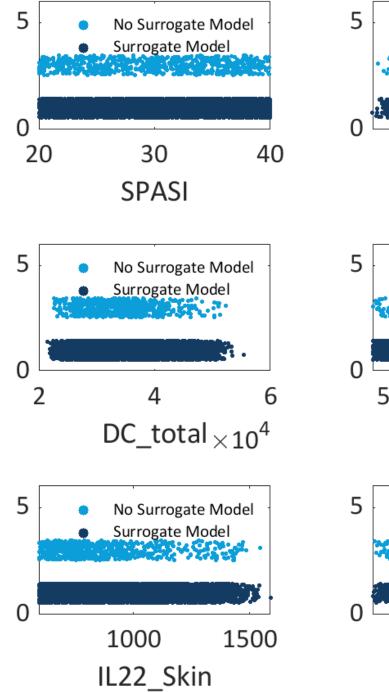



Figure 3: Number of plausible VPs generated by both the original and surrogate modeling approaches. Error bars represent standard deviation from 5 trials of 10,000 simulations each.

Result: Surrogate modeling approach generated **14x** as many plausible VPs as the original approach for the same amount of computational time once the surrogate models were constructed

Distribution of Sampled Parameters

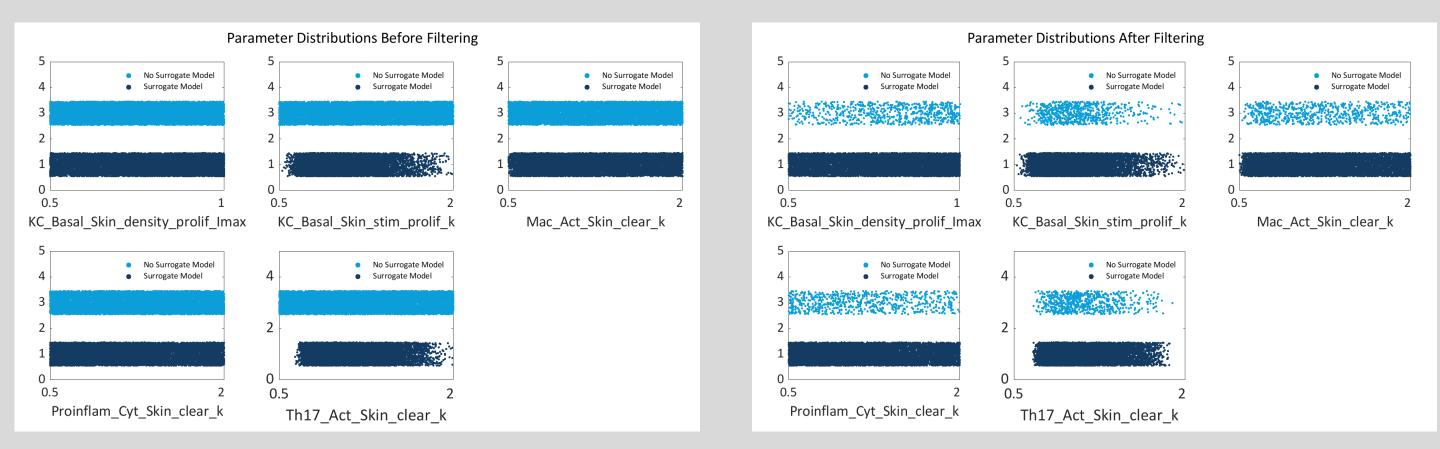


Figure 5: Distribution of sampled parameters before filtering (left) and after filtering (right) for both the original and surrogate modeling approaches.

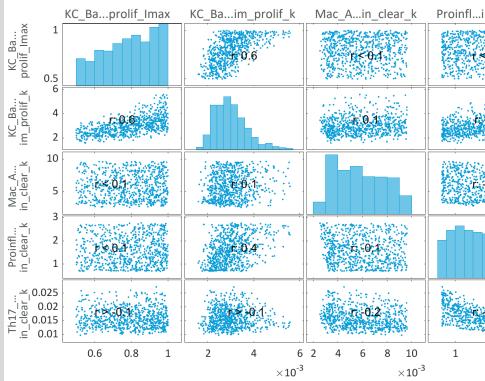


Figure 6: Correlation matrix for sampled parameters after final filtering step for (left) virtual cohort created using original workflow and (right) parameters sampled using surrogate modeling approach.

- preserved.

Results

Distribution of Model Observables Observables Distributions No Surrogate Mode No Surrogate Model No Surrogate Model Surrogate Model Surrogate Mode KC_Basal_Skin_0⁴ KC_Diff_Skip₁₀² CC_Skin $\times 10^4$ No Surrogate Mode No Surrogate Mode No Surrogate Mode Surrogate Mode Surrogate Model 10000 10 Th17_total IL17 Skin $Treg_total_{\times 10}^4$ No Surrogate Model No Surrogate Model Surrogate Model Surrogate Model 100 150 200 60 IL23_Skin TNF_Skin

Figure 4: Distribution of model observables after filtering at steady state (60 weeks).

flin_clear_k	Th17in_clear_k			KC_Bapr	olif_Imax	KC_Bain	n_prolif_k	Mac_	_Ain_c	lear_k	Proinfl	in_clear	_k Th	17in_clea	r_k
ન ≪0.1		KC Ba				r: 0.6			r > -0.1			< 0.1		r > -0.1	
f:04	tra -Di1	KC_Ba			.6				r: 0.1			r: 0.4		r > -0.1	
r0.1	r0.2	Mac_A		``r > -0.	1	r: 0						r0.1		r: -0.2	
	r -0.7	Proinfl		r < 0.1		r: 0	14		r: -0.1					r: -0.7:	in .
n -0.7		117	0.025 0.02 0.015 0.011	r > -0.	1	r>	-0.1		r: -0.2			-0.7 - 0.7-			(b -
2 3	0.01 0.02			0.6	0.8 1	2	4 6	2 4	6	8 10	1	2	3 0.01	0.02	

• **Results:** Model outcomes and parameters were similarly distributed in both methods. Relationships between parameters were also

• **Significance:** The use of surrogate models does not diminish sampling or outcome variability, and recapitulates relationships between parameters consistent with the full QSP model.