Enhancing the Utility of Systems Pharmacology Modeling in Pharmaceutical R&D: Lessons from the Development of a PCSK9 Inhibitor Model

Karim Azer, Jeffrey E. Ming, Tú Nguyen, Alex Kozinski, Meera Vanshaya, Ruth Abram, Britta Goebel, Nasim Djishi, Poulaani Banerjee, Derek W. Bartlett, Mike Reed, Benidette Piccillo, Sean McQuain, Edouard Ribas, Jeffrey Barrett

Sanofi, Bridgewater, NJ, USA; Sanofi, Frankfurt am Main, Germany; Sanofi, Montpellier, France; Regeneron, Tarrytown, NY; Roche, San Carlos, CA; Rutgers University, Newark, NJ, USA; Sanofi, Paris, France.

Abstract

Major objective: To contribute insights into systems pharmacology (SP) modeling in developing a PCSK9 inhibitor (PCSK9i) for lowering LDL-C.

Methods: A classical QSP framework was developed to explain variability in clinical response to PCSK9 inhibitors (PCSK9i). The approach, named Virtual Patient Definitions (VPDs), is a novel methodology that develops populations of virtual patients using a QSP framework and a statistical methodology. VPDs are used to inform clinical trial designs, evaluate patient selection criteria, and design the pharmacological dosing regimens.

Results: Several key elements of alirocumab activity were captured in our model (Figure 1). Alirocumab PK (Figure 2). Lipid Metabolism and Plaque Dynamics (Figure 3).

Conclusions

A QSP framework developed to explain variability in clinical response to PCSK9i, and a novel approach to VPDs, was applied to support clinical trial design. The findings provide a proof-of-concept that QSP modeling and VPDs can be used in clinical trials to improve trial design and drug development.

References

Acknowledgments

We thank the Sanofi and Regeneron teams for sharing data and inspiration for this work. We thank the statistical team at Sanofi for support in VPD methodology development. We thank the Sanofi and Regeneron teams for providing access to clinical data.

Disclosures

This study was supported by Sanofi and Regeneron. The authors have no other relevant conflicts of interest to declare.

Lipid Metabolism and Plaque Dynamics

- A whole-body systems pharmacology model of lipid metabolism and atherosclerotic plaque dynamics is being developed.
- Goals of systems model:
 -Capture several key elements of alirocumab activity (Figure 1):
 -A QSP framework developed to explain variability in treatment response, and to facilitate QSP simulation capabilities was applied

Lipid Module Major Elements

- Hepatic Lipid Metabolism and recycling.
- Cholesterol output through VLDL-C and EHC.
- Cholesterol input via synthesis, LDL-C/VLDL-C/HDL-C uptake, dietary intake, and EHC.
- Effect of intracellular cholesterol level on SREBP-regulated genes.
- Cholestasis

Alirocumab Multiple-Dose Effect on Lipid Profile (Figure 4)

- Alirocumab dose study performed at Stein et al. (2012) closer towards predictive science.
- Preclinical modeling was used for virtual patients to reflect the diversity of human responses, such as in vitro PK/PD and PK/PD simulation.
- Model improvements were made to alirocumab PK (Figure 2).
- Procedure for generation of VPs for alirocumab: Patient population identifies the largest number of VPs with different age groups, sex, race, weight, height.
- Parameters used for virtual patient definitions

Steps to Virtual Patient Creation and Simulation

- For a given clinical phenotype of interest (e.g., age, gender, race), identify biological and/or environmental factors.
- Essential variables to define virtual populations: age, gender, race, weight, height, baseline lipids.
- Virtual patients of interest can be simulated to monitor the effect of combination therapy in the phenotype represented by the virtual population.

Conclusions

- A QSP framework developed to explain variability in clinical response to PCSK9i, and a novel approach to VPDs, was applied to support clinical trial design. The findings provide a proof-of-concept that QSP modeling and VPDs can be used in clinical trials to improve trial design and drug development.