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What Are Antisense Oligonucleotides (ASQOs)?

» Short, single-stranded, synthetic nucleic acid chains of 18-20 bps in length; MW range is 6-8
kDa

» 2'-MOE ASOs are hydrophilic, highly water soluble, and poly-anionic

» Designed to bind to RNA based on complementary base pairing to modify protein expression
or modify splicing

CNS-targeting ASOs
» Both size and charge for most ASOs prevents distribution across Blood-Brain Barrier (BBB)
« Therefore, ASOs must be administered directly into the central nervous system (CNS) space

« The intrathecal (IT) route is often used to provide a substantial distribution advantage to
spinal cord and brain tissues

. Biogen.



Mechanisms of action for ASOs - w\\_f M
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What is intrathecal (IT) administration?

IT administration allows the drug to bypass BBB

Intrathecal Cerebrospinal fluid (CSF) is not homogeneous (slowly stirred)

Targeted delivery of
the drug directly to the
cerebral spinal fluid.

Heartbeat and breathing rates modulate the frequency and
magnitude of pressure oscillations in CSF

Pressure caused by IT injection and slow CSF bulk movement
contribute to the upward distribution of IT drugs

Drugs can be drained from CNS into blood

CSF is produced in
Choroid plexus
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Summary of the CNS-targeted ASO therapeutics
launched and under clinical development

Goto et al. Biopharm Drug Dispos
2023;44.26-47

. Biogen.

Route of Development ClinicalTrials.gov

Name Modality Indication Target administration stage identifier

MNusinersen AS0O SMA SMNZ2 T Launched NCT02462579
Tofersen ASO ALS SoD1 IT Launched NCT02623699
ION363 ASO ALS FUS IT Phase 3 NCT04768972
Zilganersen AS0O AxD GFAP IT Phase 3 NCT04849741
Tominersen ASO HD HTT T Phase 3 NCT03842969
IONIS-MAPTRx/ ASO AD, FTD MAPT IT Phase 2 NCT05399888

BIIBO8O
IONE5%/BIIBO%4 ASO PD LRRK2 IT Phase 2 NCT03976349
STK-001 ASO DS SCN1A IT Phase 2 NCT04740476
GTX-102 ASO AS UBE3A- IT Phase 1/2 NCT04259281
ATS
ION582 ASO AS UBE3A- IT Phase 1/2 NCT05127226
ATS

WVE-003 ASO HD HTT IT Phase 1/2 NCT05032194
WVE-004 ASO ALS, FTD C9orf72 IT Phase 1/2 NCT04931862
ION541/BIIB105 ASO ALS ATXN2Z IT Phase 1 NCT04494256
ION260/BIIB132 ASD SAT3 ATXN3 IT Phase 1 NCT05160558
ION464/BIIB101 ASO MSA, PD SNCA IT Phase 1 NCT04145486
ALN-APP siRNA AD, CAA APP IT Phase 1 NCT05231785

Abbreviations: AD, Alzheimer's disease; ALS, amyotrophic lateral sclerosis; APP, amyloid precursor protein; AS. Angelman syndrome; ASO, antisense
oligonucleotide; ATXN, ataxin; AxD, Alexander disease; C9orf72, chromosome 9 open reading frame 72; CAA, cerebral amyloid angiopathy; CNS, central
nervous system; DS, Dravet syndrome; FTD, frontotemporal degeneration; FUS, fused in sarcoma; GFAP, glial fibrillary acidic protein; HD, Huntington's
disease; HTT, huntingtin; IT, intrathecal; LRREK, leucine-rich repeat kinase; MAPT, microtubule-associated protein tau; MSA, multiple system atrophy;
OT, oligonucleotide therapeutics; PD, Parkinson's disease; SAT3, spinocerebellar ataxia type 3; SCN1A, sodium voltage-gated channel alpha subunit 1;
SMA, spinal muscular atrophy; SMNZ2, survival motor neuron 2; SNCA, synuclein alpha; SOD1, superoxide dismutase 1; UBE3A-ATS, ubiguitin protein
ligase E3A-antisense transcript.



Systemic pharmacology of ASOs

Systemic clearance

Both IT and SC routes of administration cause rapid absorption of ASOs into the systemic circulation

Mean plasma concentrations generally decrease 290% from Cmax by 24 hours
- Typically, no accumulation in Cmax or AUC after repeated doses (e.g., monthly)

ASOs in most chemical classes are metabolized by ubiquitous nucleases

ASOs are highly bound to plasma proteins (> 95%) and distribute primarily to the liver followed by the kidneys
- Distributions to other systemic organs/tissues are minimal

Systemic clearance occurs primarily due to either metabolism in blood or excretion in urine

Low risk of DDI and QT prolongation

Only limited reports of ASOs as substrates, inhibitors or inducers of cytochrome P450 enzymes in vitro or in vivo
ASOs are not substrates or inhibitors of uptake or efflux membrane transporters (e.g., OATP, OAT, MDR1, etc.)

Data from Phase 1 studies of 2-MOE ASOs at doses up to 400 mg SC or 600 mg IV for 4 weeks suggest a lack of
effect on QT intervals

Yu et al. Nucleic Acid Ther (2017) 27:285-294
Gao et al. Expert Opin Drug Metab Toxicol. (2023) 19:979-990
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IT administration: approaches to measure ASO
exposures in CNS are limited

* Biopsy and microdialysis may be performed under critical conditions
« Sampling from CSF is used as a surrogate

- Drug concentrations in CSF do not represent target areas

- May be more closely associated with exposure at the epithelium lining of the ventricular system and spinal cord, but
not brain parenchyma or deeper sites of action

« Human applications of PET/CT imaging with radio-labeled molecules and pretargeting technique are in development

- Still qualitative rather than quantitative

Direct Imaging « Limited time-frame to capture images due to isotope decay Pretargeting
@ . :?eqU|resdthedqst§ of long half-life radioactive isotopes - Not limited by isotope decay
ncreased radiation exposure « Lower radiation exposure to patients, improved safety
Lateral view.@ . ‘ ASO Tissue Concentrations
: | A in Lumbar Spinal Cord
30 ) ’
Pretargeted Imaging 4/‘(‘@
1 o o _I‘@ A \4,
/ > \=/
» g ’ g i c ~
Dorsal vie g o Intrathecal injection Intravenous infection In vivo "C!f:Ck" ‘
b g o o of ASO of radiotracer and PET imaging
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| l \ | o 8 o o Cook et al. Mol Imaging Biol (2022)
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+ wrap volume + wrap No Wrap + Wrap No Wrap + Wrap
Sullivan et al. J Transl Med (2020)18:309
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Preclinical data to characterize distribution
of intrathecal ASOs

« Human CNS tissues are practically inaccessible to analyze for drug concentrations in vivo
« Animal data and animal-to-human scaling become of critical importance

* Due to close similarity to human (e.g., geometry and upright position of the spinal column),
non-human primate (NHP) is a suitable species to evaluate PK of IT-administered ASOs

« PK data is being generated in Cyno monkeys for a range of IT-injected ASOs

 The data typically includes time-dependent PK in the lumbar CSF, spinal cord regions,
brain regions, liver, kidneys and plasma

* Plasma and lumbar CSF samples:
- collected during the study in live animals

« Terminal tissue samples:
- taken upon animal sacrifice

e Biogen.



Models of IT ASOs

« Compartmental (pop-PK) %

Luu et al. J Clin Pharm (2017), 57:1031-1041
MacCannell et al. Neuromuscul Disord (2021) 31: 310-318
Yamamoto et al. CPT Pharmacometrics Syst Pharmacol (2023) 12:1213-1226

» Physiologically-based PK (PBPK)

Biliouris et al. CPT Pharmacometrics Syst Pharmacol (2018) 7:581-592
Gao et al. Expert Opin Drug Metab Toxicol (2023) 19:979-990

Monine et al. J PKPD (2021) 48:639-654
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« Computational Fluid Dynamics (CFD)
Hsu et al. Anesth Analg (2012) 115:386-394
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Utilization of a PBPK model to describe PK of IT ASOs

A physiologically-based pharmacokinetic model to describe antisense

oligonucleotide distribution after intrathecal administration
Journal of Pharmacokinetics and Pharmacodynamics (2021) 48:639-654
Michael Monine' (» - Daniel Norris® * Yanfeng Wang? * Ivan Nestorov'
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Destructive sampling prohibits estimation of individual
(subject-specific) parameters

* Inter-subject variability of the animal population could not be adequately estimated

» Therefore, naive pooled data approach was used to characterize the central tendency

* Observations were averaged across animals at each time point

CSF and Plasma PK: PK in tissues:
- Several in-life timepoints for each animal - A single timepoint for each animal after termination
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12



PBPK model fits average NHP data

+ All tested gapmer ASOs demonstrated similar PK, which indicates qualitative similarity of biodistribution mechanisms

« Chemical modifications across various ASOs can affect (to some extent) tissue/cellular uptake and elimination rates

Example: Tofersen ASO Tissues
« Elimination t;, is similar across all CNS tissues
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Model predicts CNS exposures reaching ~4% of total IT
dose, which is greater than could be achieved via IV route

« Shortly after injection:

-A major transfer to the systemic circulation
takes place

- Almost instantaneous uptake in liver and
kidneys, followed by elimination
« Within two days after IT administration:

- About 4% of the dose reaches CNS tissues,

which still greatly exceeds the amounts
delivered by IV dose
-This result can also be seen as first

guantitative justification of IT route over other
routes (e.g., IV)

Monine et al. J PKPD (2021) 48:639-654
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Early time post-dose distribution: elimination
half-life Is controlled by CNS tissues

A few hours after injection: major transfer to the systemic circulation takes place

Rapid uptake in liver and kidneys, followed by elimination

Reaches maximum in CNS tissues (spinal cord and brain) within 1-2 days after the injection

Days-weeks: the rate of release from CNS tissues back to CSF controls the elimination phase in all CNS tissues and CSF
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Modeling prospectively predicts human autopsy exposure
data In CNS tissues

ASO concentrations in the CNS tissues are scaled by the corresponding physiological tissue volumes (sizes) assuming
equivalence of distribution rates between NHP and humans

« Simulations reproduce dosing and post-dose scenarios for participants with ALS who were treated with tofersen or
BIIBO78 (investigational C9orf72 ASO), but passed away due to ALS-related conditions

« The model was not fitted to the autopsy data

Dose, mg # doses From last dose to death Dose, mg # doses From last dose to death
100 18 1.5 months 20 X8 1.5 months
. 20 2 8.5 months 20 x9 5 months
NHP-to-human scaling 100 LTE 1.5 months 35 x11 3 weeks
by physiological 20mg x13 + 60mg x5 + 100mg x9 18 months 10 X5 2 months
6. _1n6-
volumes =10" Tofersen 2 0 BlBO78
'8) ~
) 5 : 5.
/ f\, £10™ Region 10
P S |Z| Llﬁmbar Spinal | E’
L = oracic plna
© 10* A Cerwcal Spinal % 10*
= % Cerebellum =
810° X Hippocampus § 10°
Tissue NHP Human Ratio [ < Cortex c
CSF, mL 15 140-300 210 © 102 o 8 10%
Spinal cord, g 6 35— 40 = D — Unity line -
Brain cortex, g 54 10001200  ~20 s --Within2folds &
Blood, mL 200-250 4500-5500 ~22 810 ~+ Within 3 folds § 10"-
o]
O 0
1 OO. I I | i ] j | @) ,IOO_ [
10° 10" 10* 10° 10* 10° 10° 10° 10" 102 10° 10* 10° 10°
Predicted concentration (ng/g) Predicted concentration (ng/mL)
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Predicting ASO concentrations and target
engagement in support of FIH

» Key question: what dose levels/regimen would be required to achieve a desired response in a region of interest (e.g.,

disease—associated mMRNA knockdown in cortex)?

1. PK studies

in NHP
« Candidate
screening
* Toxicology/GLP
* Biodistribution

. Biogen.

2. PK modeling

* NHP PBPK model
* NHP-human scaling
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PK/PD: interpretation of CSF protein reduction based on
predicted TE in CNS tissues

MRNA knockdown in transgenic mouse
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Tofersen/SOD1 ALS ASO: reduction in SOD1 protein and the associated
trends towards improvement in physical functions

100 mg monthly (IT)

® Placebo+delayed-start tofersen (N=36) @ Early-start tofersen (N=72)

* Neuronal degeneration in SOD1 ALS disorder is considered to
S —— be caused by toxic gain of function of the mutant SOD1
125+ VALOR i Open-label extension proteln

1.004

* In persons with SOD1 ALS, tofersen reduced concentrations
of SOD1 in CSF and of neurofilament light chains in plasma
over 28 weeks

0.75-

0.504

o i_____

Geometric Mean Ratio to Baseline

0.25

B . e TS * Longer term data from the OLE showed improvement in
Weeks since VALOR Basaline ALSFRS-R specifically in the early-start tofersen group

Concentration of NfL in Plasma
1.504

ALSFRS-R Total Score

VALOR i Open-label extension

© ! " VALOR Open-label extension

£ 5o O#=c-------------—-- T m s m e

B ] Sy

E 52 ~_ 3% _

3 T O e E o Worsening

: § 2 .

=% S !
TE was achieved:; 2 257 |
Consistent trend in clinical effect § :;: s . -

0.25 0 4 8 12 16 20 24 28 32 36 40 44 48 52

1
T T T T T T T T T T T 1
0 4 & 12 16 20 24 28 32 36 40 44 48 52

Woeks since VALOR Basaline Weeks since VALOR Baseline
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C9orf72 ALS ASO: while treatment led to robust reduction of CSF poly(GP)
and poly(GA) proteins, there was no improvement observed in any of the

functional scales
5-90 mg monthly (IT)
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Integrating ASO PK model with QSP approach to predict

Nf release

Nf adult healthy model

Peripheral Nervous System Central Nervous System

Endoneurial fluid / Interstitial fluid (I1SF) \

Paris et al. CPT Pharmacometrics Syst
Pharmacol 2022; 11:447-457
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Acknowledged as biomarker of neurodegeneration

Used in a steadily growing number of clinical trials
of different diseases

Considered for drug approval (tofersen)

Evaluated as prognostic biomarker
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Integrating ASO PK model with QSP approach to predict
NP release PN

Endoneurial fluid

pNfH pediatric SMA model
in NF model
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Model application: predicting SOD1-ALS disease onset
and treatment

: : : Combination of onset and treatment
Simulation of disease onset

Simulation of treatment Simulation of disease onset

We included in the model a logistic function simulating the
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Basic conclusions

» Intrathecal (IT) administration of antisense oligonucleotides (ASOs) has become an efficient method for
targeting neurodegenerative and neuromuscular disorders

» Dose projection for IT-administered ASOs in humans requires accurate estimation of exposures at target
sites within the central nervous system (CNS)

« Since human CNS tissues are practically inaccessible to analyze for ASO concentrations and target
engagement in vivo, animal data and animal-to-human scaling become of critical importance in guiding
dose selection for first-in-human (FIH) studies

» A preclinical physiologically-based pharmacokinetic (PBPK) model has been developed
- Describes the whole-body distribution of IT ASOs in non-human primate (NHP) studies
- Was scaled to human

* Risks remain high due to
- variability in PK

- uncertainty in translation of target engagement between species and contribution of
pharmacodynamic (PD) response at a tissue level to changes in clinical endpoints

» Integration of the PBPK model with Nf QSP model allowed predicting individual ASO treatment scenarios
and the effect on Nf levels

. Biogen.
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Dealing with uncertainty and identifiability

Model 1

» Each parameter is uniquely defined
» Describes the data nicely

* |dentifiability problem

CSF X Brain
k li":d!e.g

Proximal
brain, A¥

Model 1 (AIC = —18.6)

Value, h™! SE
(CV%)

kT =0.6942 -

k¢ =5464 -
kP = 0.09471 -

kPP = 0.03722 56.3
Kt = 0.1386 -

kT = 2.366 -
k¢ = 0.05027 88.2
KPP =26x10"" -

kb =1.6 x 107 29.25
kl,=33x107% -

kS =61 x107%  —

ki, =68 x 107 47.32
K, =83x107% 4041
k5, =72x10"* 450l
kP, =23x10"% 5851
K, =25x10" 6184
ki, =41 x 107" 67.03
kS =29x%x10" -

k5, =75x10"* 48.05
K, =63 x107* 5949
i =72x10"* 5684
o =15x107? -

ki, =0.2428 16.35
kB =23%x107° 96.86
kgeg = 5.9 x 107%  —

Model 2

* Some parameters are grouped
* Fits the data well

* More identifiable

CSF kX3 Brain
1

DlstaﬁtDbram, Cortex, Aé(
1

Hippocampus, A‘;{
B

Proximal k13 AB kdeg

) P Cerebellum, A3
brain, A7 b
K ~ Kaeg
Pons, A3
k31

k down

kdeg

/ kdeg
Br
k14-

Spinal cord

kdeg
 ——

e

k deg

kdeg

Monine, Norris, Wang, Nestorov. J
PKPD (2021) 48:639-654

Model 2 (AIC = —12.5)

Value, h™! SE
(CV%)
kip = 0.2955 19.3

kdo“.” = (0.08424 54.86

ki, =9.6x107* 1608
ki, =23x 107 1455
kG =18x10"% 175

K, =7.1x10"* 1978

Ky=6x10% 2316
K =82x10" 257

KL =12x107° 3009
kY, = 0.03179 24.78
ki =8.6x10* 2386

ki, = 0.2469 7.469
k¥ = 0.0403 328
Kgeg = 8.4 x 1078 —
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Model performance vs. NHP data

« CSF: distribution phase lasts 2-3 days; sharp initial drop
* Plasma PK follows the CSF PK with 1-2 hrs delay in

peak concentration

« Long elimination phase detected in CSF (plasma 10°
concentrations drop BLQ)

Lumbar CSF
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i
Los  ONS
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[
107

a. h
[ [

0B 12
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[ ]
P ¥

me

18 24 30 36
hour]

-
B

=% =3 =k =k =k =k =k
o o o o o o O
|D ()

s/

Concentration [ng/mL]

'O Data
Plasma — Model 1
- - Model 2

—% =& =% X
DDC:I_.D o

0 1 2 3 4 5
Time [day]
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s S R
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e e T
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o o o
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Cervical Spinal

Concentration [ng/mL]
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0 28 56 84 112 140
Time [day]

Monine, Norris, Wand, Nestorov. J PKPD (2021) 48:639-654

» Terminal half-life is similar across all
sampled CNS tissues (t;,,~1-1.5 months)

Pons Cortex

Hippocampus Kidneys

( )
) [
N NN NN NN BN BN NN BN BN BN S B B B e e e

0 28 56 84 112140 10 28 56 84 112 140 ) J
Time [day] Vemmceee———
Liver and kidneys are

major ASO elimination
organs
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NHP PK data: dose linearity can be assumed

* Investigational ASO: 2’-MOE and PS modified gapmer
* 40-50 animals dosed in a typical NHP study

* Infusion via lumbar puncture at level L3-L4 (slow bolus of 1 mL solution over 1 min)

* Dose-linearity check in tissues: Observed ASO
concentrations in CNS tissues appear to be linear with

dose 100-

150-

At 1 week after last dose
Lumbar Spinal

@,
R2=0.93 |
ST G
- st
i’ -
-
-~
= d

b]

* Observed CSF demonstrates slight non-linearity with 50- ; ﬂﬁ’"
dose QE“ 0- <"
. . . = Thoracic Spinal
 Models assume overall dose linearity within the 2100 255 g0 -
studied dose range c 75 '
O
= 50- 0}
B s o B-
— Pre-3rd dose . Pre-5th dose g 2 gt
140 pos E 160 pooggp g 0-°
EP 2138: i S Cervical Spinal
S190 S 100- O 0. R?=0.87
g 80 8 go- o
g 60 S 60 1 L 40- =
g 40 ‘ g 40 i =
S 200 @& . 3 20 ,4;0; 20 '~,‘é
. A S s A o8
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> .. Monine, Norris, Wang, Nestorov. J PKPD (2021) 48:639-654
Biogen.
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Clearance from CSF to blood and uptake in CNS
t| sSSues leptomeningeal

arte
‘stomata’ (pores/ | ry

openings) y
leptomeningeal ? -

endotheli gll

smooth—i= endothelial cell BM

* The perivascular spaces of cerebral blood vessels have in recent o Bl 1

smooth inte elastic lamina

years been the subject of increasing research as pathways for muscle (SM) coll & barachnoid
CSF/ISF exchange, but controversy exists over their precise role vascular Space o

connective

tissue space lining cells
with ‘stomata’

leptomeningeal lining cell |

pial cell |

A7 MCA leptomeninggal
lining cell layer with
¢ . pore

* Potential routes of entry from the CSF into the PVS include
specialized pores (“stomata”) recently demonstrated on the \
adventitial lining cells of leptomeningeal vessels

* Similar pores may also exist on the pia, providing an additional
route into the PVS via the subpial space

Acta Neuropathologica (2018) 135:387-407

\

capillary =
microvessel

’Biogen.
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