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What Are Antisense Oligonucleotides (ASOs)?

• Short, single-stranded, synthetic nucleic acid chains of 18-20 bps in length; MW range is 6-8 

kDa

• 2′-MOE ASOs are hydrophilic, highly water soluble, and poly-anionic

• Designed to bind to RNA based on complementary base pairing to modify protein expression 

or modify splicing

CNS-targeting ASOs

• Both size and charge for most ASOs prevents distribution across Blood-Brain Barrier (BBB)

• Therefore, ASOs must be administered directly into the central nervous system (CNS) space

• The intrathecal (IT) route is often used to provide a substantial distribution advantage to 

spinal cord and brain tissues
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Chimeric 2’-MOE/DNA ASOs 

(‘‘gapmers’’)

Enzyme-dependent degradation of 

targeted mRNA

- Tofersen (ALS)

- Tominersen (Huntington’s disease)

- Viltolarsen (Duchene muscular 

dystrophy)

Full 2’-MOE modified ASOs 

for splicing modulation

Increase of SMN protein 

expression by modulating 

splicing of the SMN2 

precursor mRNA

- Nusinersen (SMA)

Examples of IT ASOs and their MoA:

• ASO trafficking within cells may occur through multiple pathways involving productive and 

non-productive uptake resulting in varying levels of pharmacodynamic activity

• Once delivered to the target tissue, ASOs need to escape endosomes to engage with 

the intracellular target (e.g., RNA)

• The non-productive pathway may account for the majority of ASOs accumulating in cells 

Mechanisms of action for ASOs
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What is intrathecal (IT) administration?

• IT administration allows the drug to bypass BBB

• Cerebrospinal fluid (CSF) is not homogeneous (slowly stirred)

• Heartbeat and breathing rates modulate the frequency and 

magnitude of pressure oscillations in CSF

• Pressure caused by IT injection and slow CSF bulk movement 

contribute to the upward distribution of IT drugs

• Drugs can be drained from CNS into blood
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Summary of the CNS‐targeted ASO therapeutics 

launched and under clinical development

Goto et al. Biopharm Drug Dispos 

2023;44:26–47

Launched
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Systemic clearance

• Both IT and SC routes of administration cause rapid absorption of ASOs into the systemic circulation

• Mean plasma concentrations generally decrease ≥90% from Cmax by 24 hours

- Typically, no accumulation in Cmax or AUC after repeated doses (e.g., monthly)

• ASOs in most chemical classes are metabolized by ubiquitous nucleases

• ASOs are highly bound to plasma proteins (> 95%) and distribute primarily to the liver followed by the kidneys

- Distributions to other systemic organs/tissues are minimal

• Systemic clearance occurs primarily due to either metabolism in blood or excretion in urine

Low risk of DDI and QT prolongation

• Only limited reports of ASOs as substrates, inhibitors or inducers of cytochrome P450 enzymes in vitro or in vivo

• ASOs are not substrates or inhibitors of uptake or efflux membrane transporters (e.g., OATP, OAT, MDR1, etc.)

• Data from Phase 1 studies of 2’-MOE ASOs at doses up to 400 mg SC or 600 mg IV for 4 weeks suggest a lack of 

effect on QT intervals

Systemic pharmacology of ASOs

Yu et al. Nucleic Acid Ther (2017) 27:285–294

Gao et al. Expert Opin Drug Metab Toxicol. (2023) 19:979-990 
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• Biopsy and microdialysis may be performed under critical conditions

• Sampling from CSF is used as a surrogate

- Drug concentrations in CSF do not represent target areas

- May be more closely associated with exposure at the epithelium lining of the ventricular system and spinal cord, but 

not brain parenchyma or deeper sites of action

• Human applications of PET/CT imaging with radio-labeled molecules and pretargeting technique are in development

- Still qualitative rather than quantitative

IT administration: approaches to measure ASO 

exposures in CNS are limited

Cook et al. Mol Imaging Biol (2022) 

24:940-949

Sullivan et al. J Transl Med (2020)18:309

Pretargeting



9

• Human CNS tissues are practically inaccessible to analyze for drug concentrations in vivo

• Animal data and animal-to-human scaling become of critical importance

• Due to close similarity to human (e.g., geometry and upright position of the spinal column), 

non-human primate (NHP) is a suitable species to evaluate PK of IT-administered ASOs

• PK data is being generated in Cyno monkeys for a range of IT-injected ASOs

• The data typically includes time-dependent PK in the lumbar CSF, spinal cord regions, 

brain regions, liver, kidneys and plasma

• Plasma and lumbar CSF samples:

- collected during the study in live animals

• Terminal tissue samples: 

- taken upon animal sacrifice

Preclinical data to characterize distribution 

of intrathecal ASOs
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Models of IT ASOs

• Physiologically-based PK (PBPK)

Biliouris et al. CPT Pharmacometrics Syst Pharmacol (2018) 7:581–592

Gao et al. Expert Opin Drug Metab Toxicol (2023) 19:979-990

Monine et al. J PKPD (2021) 48:639-654

• Compartmental (pop-PK)

Luu et al. J Clin Pharm (2017), 57:1031–1041

MacCannell et al. Neuromuscul Disord (2021) 31: 310–318

Yamamoto et al. CPT Pharmacometrics Syst Pharmacol  (2023) 12:1213–1226 

• Computational Fluid Dynamics (CFD)

Hsu et al. Anesth Analg (2012) 115:386–394

Linninger et al. Front Physiol (2023) 14:1130925

Khani et al. Fluids Barriers CNS (2022) 19:8

• Physical in vitro models

Seiner et al. Front Neuroimaging (2022) 1:879098



Utilization of a PBPK model to describe PK of IT ASOs
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NHP data:

• Lumbar CSF and blood (in live)

• Spinal cord and brain regions (terminal)

• Compartmental structure includes observable tissues in non-

human primates (NHP)

• All transitions follow the first-order kinetics

• Model parameters are determined based on fitting NHP data
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CSF and Plasma PK:
- Several in-life timepoints for each animal

PK in tissues:
- A single timepoint for each animal after termination

• Inter-subject variability of the animal population could not be adequately estimated

• Therefore, naïve pooled data approach was used to characterize the central tendency

• Observations were averaged across animals at each time point 

Destructive sampling prohibits estimation of individual 

(subject-specific) parameters

Monine, Norris, Wang, Nestorov. J PKPD (2021) 48:639-654 



PBPK model fits average NHP data
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Lumbar CSF

• Distribution phase lasts several 

days

• Elimination half-life in CSF is 

controlled by t1/2  in CNS tissues

Plasma

• Plasma PK follows the CSF PK 

with 1-2 hrs delay in Tmax and 

lower Cmax

Tissues

• Elimination t1/2 is similar across all CNS tissues    

(1-2 months)

• Liver and kidneys are major ASO elimination 

organs

• All tested gapmer ASOs demonstrated similar PK, which indicates qualitative similarity of biodistribution mechanisms

• Chemical modifications across various ASOs can affect (to some extent) tissue/cellular uptake and elimination rates

Example: Tofersen ASO

ASO data,



Model predicts CNS exposures reaching ~4% of total IT 

dose, which is greater than could be achieved via IV route
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• Shortly after injection:

- A major transfer to the systemic circulation 

takes place

- Almost instantaneous uptake in liver and 

kidneys, followed by elimination

• Within two days after IT administration:

- About 4% of the dose reaches CNS tissues, 

which still greatly exceeds the amounts 

delivered by IV dose

- This result can also be seen as first 

quantitative justification of IT route over other 

routes (e.g., IV)

Spinal cord,
Brain

Monine et al. J PKPD (2021) 48:639-654 



Early time post-dose distribution: elimination 

half-life is controlled by CNS tissues
• A few hours after injection: major transfer to the systemic circulation takes place

• Rapid uptake in liver and kidneys, followed by elimination

• Reaches maximum in CNS tissues (spinal cord and brain) within 1-2 days after the injection

• Days-weeks: the rate of release from CNS tissues back to CSF controls the elimination phase in all CNS tissues and CSF
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Modeling prospectively predicts human autopsy exposure 
data in CNS tissues

NHP-to-human scaling 

by physiological 

volumes

Presented at PAGE 2023

• ASO concentrations in the CNS tissues are scaled by the corresponding physiological tissue volumes (sizes) assuming 

equivalence of distribution rates between NHP and humans

• Simulations reproduce dosing and post-dose scenarios for participants with ALS who were treated with tofersen or 

BIIB078 (investigational C9orf72 ASO), but passed away due to ALS-related conditions

• The model was not fitted to the autopsy data



Predicting ASO concentrations and target 

engagement in support of FIH
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• Key question: what dose levels/regimen would be required to achieve a desired response in a region of interest (e.g., 

disease–associated mRNA knockdown in cortex)?

3. PD modeling

CSF biomarkers 

(e.g., protein 

reduction from 

baseline)

Clinical function 

(e.g., ALSFRS-R)

mRNA knockdown

• Assume immediate 

response

• Potency from 

transgenic mouse

Protein reduction

• Delayed response due to 

long protein t1/2

• Assume same EC50 as 

for mRNA knockdown

1. PK studies 
in NHP

• Candidate 
screening

• Toxicology/GLP

• Biodistribution

4. Human dose 
projection

2. PK modeling

• NHP PBPK model

• NHP-human scaling

5. Interpretation 
of clinical 
readouts



Tofersen (100 mg BIIB067 Q4W) C9orf72 ASO (60 mg BIIB078 Q4W)

Predicted protein 
reduction in CSF ~35% ~53%

Observed protein 
reduction in CSF
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37% 60%

Assumptions

• Potency: human CNS = t.g. mouse CNS

• Protein ↓ = mRNA ↓

• CSF response is proportional to size of 

target organs:

    ~ 10% from spinal cord

    ~ 90% from cortex

PK/PD: interpretation of CSF protein reduction based on 
predicted TE in CNS tissues



Tofersen/SOD1 ALS ASO: reduction in SOD1 protein and the associated 
trends towards improvement in physical functions

Miller et al.

• Neuronal degeneration in SOD1 ALS disorder is considered to 

be caused by toxic gain of function of the mutant SOD1 

protein

• In persons with SOD1 ALS, tofersen reduced concentrations 

of SOD1 in CSF and of neurofilament light chains in plasma 

over 28 weeks

• Longer term data from the OLE showed improvement in 

ALSFRS-R specifically in the early-start tofersen group

100 mg monthly (IT)

TE was achieved;

Consistent trend in clinical effect



C9orf72 ALS ASO: while treatment led to robust reduction of CSF poly(GP) 
and poly(GA) proteins, there was no improvement observed in any of the 
functional scales

ALSFRS-R total score

NfL in CSF

• Based on the results of this Phase 1 study, BIIB078 

clinical development has been discontinued, including 

the open-label extension study

• However, these results will be informative in evolving our 

understanding of the complex biology of C9orf72-ALS

Van den Berg et al. Lancet Neurol. 2024. Accepted 

Placebo
5 mg
10 mg
20 mg
35 mg
60 mg
90 mg

5-90 mg monthly (IT)
TE was achieved;

However, it did not translate into clinical effect



Integrating ASO PK model with QSP approach to predict 

Nf release
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Nf adult healthy model

• Acknowledged as biomarker of neurodegeneration

• Used in a steadily growing number of clinical trials 

of different diseases

• Considered for drug approval (tofersen)

• Evaluated as prognostic biomarker

Paris et al. CPT Pharmacometrics Syst 

Pharmacol 2022; 11:447-457

www.cosbi.eu

Center for Computational and Systems Biology

http://www.cosbi.eu/


Integrating ASO PK model with QSP approach to predict 

Nf release
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pNfH pediatric SMA model
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NfL adult SOD1-ALS model 

Paris et al. CPT Pharmacometrics Syst 

Pharmacol 2023; 12:196-206

www.cosbi.eu

Center for Computational and Systems Biology

http://www.cosbi.eu/


Model application: predicting SOD1-ALS disease onset 

and treatment

Simulation of disease onset

We included in the model a logistic function simulating the 

increase of the NfL leakage when the people with ALS 

passes to the symptomatic phase of the disease

Data from: Benatar et al. Annals of neurology, 84(1), 130-139, 2018

Combination of onset and treatment

Simulation of treatment Simulation of disease onset

Simulation of onset and treatment

www.cosbi.eu

Center for Computational and Systems Biology

http://www.cosbi.eu/
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Basic conclusions 

• Intrathecal (IT) administration of antisense oligonucleotides (ASOs) has become an efficient method for 

targeting neurodegenerative and neuromuscular disorders

• Dose projection for IT-administered ASOs in humans requires accurate estimation of exposures at target 

sites within the central nervous system (CNS)

• Since human CNS tissues are practically inaccessible to analyze for ASO concentrations and target 

engagement in vivo, animal data and animal-to-human scaling become of critical importance in guiding 

dose selection for first-in-human (FIH) studies

• A preclinical physiologically-based pharmacokinetic (PBPK) model has been developed

- Describes the whole-body distribution of IT ASOs in non-human primate (NHP) studies

- Was scaled to human 

• Risks remain high due to 

- variability in PK

- uncertainty in translation of target engagement between species and contribution of 

pharmacodynamic (PD) response at a tissue level to changes in clinical endpoints

• Integration of the PBPK model with Nf QSP model allowed predicting individual ASO treatment scenarios 

and the effect on Nf levels
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Model 1

• Each parameter is uniquely defined

• Describes the data nicely

• Identifiability problem

Model 2

• Some parameters are grouped

• Fits the data well

• More identifiable

Dealing with uncertainty and identifiability

Monine, Norris, Wang, Nestorov. J 

PKPD (2021) 48:639-654 



28

Model performance vs. NHP data

Liver and kidneys are 

major ASO elimination 

organs

• Terminal half-life is similar across all 

sampled CNS tissues (t1/2~1-1.5 months)
• CSF: distribution phase lasts 2-3 days; sharp initial drop

• Plasma PK follows the CSF PK with 1-2 hrs delay in 

peak concentration

• Long elimination phase detected in CSF (plasma 

concentrations drop BLQ)

Monine, Norris, Wand, Nestorov. J PKPD (2021) 48:639-654 
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• Dose-linearity check in tissues: Observed ASO 

concentrations in CNS tissues appear to be linear with 

dose

• Observed CSF demonstrates slight non-linearity with 

dose

• Models assume overall dose linearity within the 

studied dose range

• Investigational ASO: 2’-MOE and PS modified gapmer

• 40-50 animals dosed in a typical NHP study

• Infusion via lumbar puncture at level L3-L4 (slow bolus of 1 mL solution over 1 min)

NHP PK data: dose linearity can be assumed

Monine, Norris, Wang, Nestorov. J PKPD (2021) 48:639-654 
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Clearance from CSF to blood and uptake in CNS 

tissues

• The perivascular spaces of cerebral blood vessels have in recent 
years been the subject of increasing research as pathways for 
CSF/ISF exchange, but controversy exists over their precise role

• Potential routes of entry from the CSF into the PVS include 
specialized pores (“stomata”) recently demonstrated on the 
adventitial lining cells of leptomeningeal vessels

• Similar pores may also exist on the pia, providing an additional 
route into the PVS via the subpial space
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