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Analyzing Data

e Often must make best use
of data CASES

— Reduce bias
— Increase efficiency

— Smaller trials / better
decisions

\“\VACCINE. GROUP

e A large class of data:

(bounded) outcome scores TIME
- Emerging area in STATISTICS TiP: ALWAYS TRY TO GET
pharmacometrics, DATA THAT'S GOOD ENOUGH THAT YOU
especially in past ~3 years DONT NEED TO DO STATISTICS ON IT
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Bounded Outcome Scores (BOS)

Take restricted values within boundary

Composite scores measuring disease severity
— Used in many disease areas — immunology, neuroscience, etc.

— Primary clinical trial endpoints, or used to derive them

Example:

— Psoriasis Activity Severity Index (PASI) score: 0 — 72, with 0.1 increments

For notation, may standardize data as integers 0, 1, 2, ..., n

— Alternatively, onto closed interval [0,1]: for PASI score, [0, 1/721, 2/721, ..., 1]

Ordered categorical endpoints in nature (with many categories)

-
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Derived Endpoints: Higher Bar for BOS

e Achieving a level, change from baseline, or combination of both
(reaching certain threshold)

— Often used as clinical trial primary endpoints

e Example:

— Psoriasis: PASI 75/90/100: achieving 75, 90, or 100% improvement
from baseline

e Achieve PASI 100 < PASI score = 0
e Model may describe often original scores but rarely derived
endpoints

— Describing derived endpoints requires that of the distribution of the
original scores

e Very difficult!
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Common (Folklore?) Thinking

o If small # of categories (e.g., <6), analyze as ordered
categorical

e “Intermediate” (e.g., >6 but <10) ??

o If “large” # of categories (e.g., >10), analyze as continuous

— Problems:
e Predicting data outside original range

e Difficulty with skewed data distributions
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BOS May Have Skewed Distributions

The AAPS Journal (2020) 22:61
DOI: 10.1208/s12248-020-00441-4

X
R

Check for
updates

Research Article

Applying Beta Distribution in Analyzing Bounded Outcome Score Data

Chuanpu Hu,* Honghui Zhou,' and Amarnath Sharma’
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Longitudinal Model Diagram

Drug Dose
ADs.

Elimination
CL

Concentration-Time

Inhibitory,

Effect "
¥ Formation of
Disease (k.

Placebo Effect
Efficacy Time Profile

o Sufficient PK: sequential PK/PD analysis fixing individual Posthoc PK parameter estimates
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Model Data as Continuous: VPC of PASI
Score Biased at Low End

e As treatment
progresses:

— Observed
median and 5%
ercentiles both
ecome near 0

e Cannot be
achieved by
continuous
model
predictions

— Model predicted
median is fine,
but 5%
percentile
outside data
range (<0)
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VPC of Derived Endpoints: PASI 75/90/100
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More Biased VPC of A Derived Endpoint
in @ highly sensitive subpopulation

e Continuous
model
significantly
underpredicte
d PASI 100 in
a highly
sensitive
subpopulation

— Achieved
PASI 100 at
Week 28,
then taken
off drug
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Fig. 3. The continuous analysis model predicted and observed PASI
100 responder rates when active treatment was withdrawn after week
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Transformation and Related Approaches

e Common transformations, e.qg., log or logit, cannot be directly applied
— At boundary (0), log(0) = «

J Pharmacokinet Pharmacodyn (2017) 44:437-448 @ CrossMark
DOI 10.1007/s10928-017-9531-3

ORIGINAL PAPER

Improvement in latent variable indirect response modeling
of multiple categorical clinical endpoints: application to modeling
of guselkumab treatment effects in psoriatic patients

Chuanpu Hu' - Bruce Randazzo” - Amarnath Sharma' - Honghui Zhou'

e Proportional/(additive + proportional) error model Ill-behaved
— At boundary (0), likelihood — «
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Transform Data to within Boundary?
Beta-regression

Psychological Methods Copyright 2006 by the American Psychological Association
2006, Vol. 11, No. 1, 54-71 1082-989X/06/$12.00 DOI: 10.1037/1082-989X.11.1.54

A Better Lemon Squeezer? Maximum-Likelihood Regression
With Beta-Distributed Dependent Variables

Michael Smithson Jay Verkuilen

The Australian National University University of Illinois at Urbana—Champaign

e Originated from psychological literature

— Spread to statistical literature (occasionally but not recently) and pharmacometrics

Beta-distribution: on open interval (0,1), with density: f(x) ~ x3(1-x)b

Linearly transform original score to (0,1)
— (Left) boundary must be transformed to some value:
— Transform data to [¢, 1)

— Arbitrary fudge factor ¢: often ¢ = 0.01

e Intuition: small change does not matter

-
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Problem with Beta-regression

J Pharmacokinet Pharmacodyn (2017) 44:437-448 @ CrossMark
DOI 10.1007/s10928-017-9531-3

ORIGINAL PAPER

Improvement in latent variable indirect response modeling
of multiple categorical clinical endpoints: application to modeling
of guselkumab treatment effects in psoriatic patients

Chuanpu Hu' - Bruce Randazzo® - Amarnath Sharma’ Honghui Zhou'

o Statistically ill-behaved

- Boundary observations become arbitrarily influential with smaller ¢, e.g., 10

e Small change does matter at highly-sensitive location!
- “Butterfly effect”
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Censoring

Statistics

Research Article
® M Ot I Va te d fro m m Od e I I n g Received 30 June 2009, Accepted 25 October 2010 Published online in Wiley Online Library
BQ L P K (wileyonlinelibrary.com) DOI: 10.1002/sim.4155

e Separate data on/within Estimating transformations for repeated
boundary: measures modeling of continuous

bounded outcome data
— Model data within boundary
as continuous, with
transformations to handle
data skewness, if needed

Matthew M. Hutmacher,**' Jonathan L. French,”
Sriram Krishnaswami® and Sujatha Menon"

— Model boundary data as
censored, like "BQL"

— Need additional “"LLOQ" : s
parameters for bounanry e Esthetics: boundary and within-

data bounds data have the same
nature; why should they be
treated differently ("BQL" vs

e Removes previous problems continuous)?

due to achieving boundary

-
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Ideally, Respect Data Nature

e BOS data are in fact ordered categorical

e Treating the data as such (using logit/probit regression) is superior, when can be done

Received: 31 October 2016 Revised: 8 June 2017 Accepted: 13 July 2017

DOI: 10.1002/sim.7433

RESEARCH ARTICLE WILEY Statistics

Modeling continuous response variables using ordinal
regression

Journal of Pharmacokinetics and Pharmacodynamics (2018) 45:803-816
https://doi.org/10.1007/510928-018-9610-0

ORIGINAL PAPER
@ CrossMark

Qi Liu’® | Bryan E. Shepherd! | Chun Li* | Frank E. Harrell Jr.!

Modeling near-continuous clinical endpoint as categorical: application
to longitudinal exposure-response modeling of Mayo scores
for golimumab in patients with ulcerative colitis

Chuanpu Hu' ® + Omoniyi J. Adedokun’ - Liping Zhang' + Amarnath Sharma' - Honghui Zhou'

e If too many intercepts to estimate: can they be “fixed”?

h
PHARMACEUTICAL COMPANIES
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Recent Advances: Latent Variable Approaches

e Most natural

e Underlies standard categorical data analysis approaches of
logit/probit regression

e Observed data occurs when underlying latent variable crosses
certain thresholds

e The thresholds correspond to intercepts

e Idea:
— Fix the thresholds “naturally”

— Model latent variable with flexible distributions to handle skewness
e Instead of transforming the original score

' AAAAAAAAAAAAAAAAAAAAAAAA



Approach 1: Coarsened Grid

Biostatistics (2007), 8, 1, pp. 72-85
do1:10.1093/biostatistics/kxj034
Advance Access publication on April 5, 2006

The logistic transform for bounded outcome scores

EMMANUEL LESAFFRE®, DIMITRIS RIZOPOULOS, ROULA TSONAKA

Biostatistical Centre, Catholic University of Leuven,
U.Z. St. Rafaél, Kapucijnenvoer 35, B-3000 Leuven, Belgium
emmanuel.lesaffre(@med.kuleuven.be

e Established BOS concept

-
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Coarsened Grid Illustration

I |

> BoS
+*+ 4 B 1

Latent Variable (U)

e Motivation: BOS value k = 0,1, ...m occurred by rounding of
continuous latent variable U on interval (0, m) to integer

e Latent variable thresholds fixed at middle points: 0.5, 1.5, etc.
e Scale U to (0,1), then model with logit-normal distribution

e logit(U) = pred + ¢, with ¢ ~ N(0O, c2)

' AAAAAAAAAAAAAAAAAAAAAAA



Approach 2: Bounded Integer

e Motivated differently: Wellhagan et al, PAGE 2018

e Split a normal A scale with 5 categories

distribution ONIVERSITET
— To # of Given a standard normal distribution N(O,): )
intervals as — The probit is the quantile function
BOS — ®(x) is the cumulative distribution
categories function
- With equal 1 Zg,/o 3
probability = 2
probit(1/5) ° o
e Model mean and 0 4
sd ®(probit(1/5)) 20% 20%

\Q -0.84 -0.25 025 0.84
Percentile 20% 40% 60% 80%

e Should be close to Coarsened Grid, especially if # of category is large

-
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More on Coarsened Grid and
Bounded Integer

The AAPS Journal (2019) 21:74 @

DOI: 10.1208/512248-019-0343-9 Check for
updates

Research Article

A Bounded Integer Model for Rating and Composite Scale Data

Gustaf J. Wellhagen,' Maria C. Kjellsson,'! and Mats O. Karlsson'?

The AAPS Journal (2019) 21:102 @

DOI: 10.1208/512248-019-0370-6 Check for
updates

Commentary

On the Comparison of Methods in Analyzing Bounded Outcome Score Data

Chuanpu Hu'*

e Both approaches may have difficulties with skewness with
underlying normal distribution

- :
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Approach 3: Latent-beta

SMMR

STATISTICAL METHODS IN MEDICAL RESEARCH

Article

Statistical Methods in Medical Research
2018, Vol. 27(5) 1376—-1393

A new parsimonious model for ordinal © The Author) 21¢

Reprints and permissions:

longitudinal data with application e s
o ° * journals.sagepub.com/home/smm
to subjective evaluations of a SSAGE

gastrointestinal disease

Moreno Ursino'? and Mauro Gasparini'

e The newest and brightest

-
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Latent-beta

e Use beta distribution
instead of (logit)normal

e Wikipedia:

— Beta distribution shapes

e High flexibility to model
skewed distributions

e Resolves all previous
issues with other

approaches
h —
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Applying Latent-beta to Guselkumab Psoriasis

e Model
reasonably
predicted
observed PASI
scores

— Minor problem
remained at
baseline median

e Baseline
distribution
appeared
more skewed

— Reasonable
prediction of
treatment effect
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Latent-beta VPC of Derived Endpoints:
PASI 75/90/100

Observed o} 90% PI simulated
Median simulated ------
0 10 20 30 40 50 0 10 20 30 40 S0
o MOdel | | | | |  F | | | | | |- | | | | 11 | | | | |
reasonably PASI75 PASI75 PASI75 PASI75
described data Study1 100mg Study1 pbo Study2 100mg Study2 pbo
0.8 B
. 0.6 - ™
e Later time 0.4 - -
points of 0.2 - D
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- = ros
0.6
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nuanced due
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optimization
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improved from
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Reasonable VPC of Derived Endpoint

e Latent-beta model
reasonably
predicted PASI
100 in a highly
sensitive
subpopulation

— Achieved PASI
100 at Week 28,
then taken off
drug

e Much improved

from the
continuous model

anssen ‘ PHARMACEUTICAL COMPANIES
J OF go'fuwmwgwfutmt
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Fig. 6. The BOS analysis model predicted and observed PASI 100
responder rates when active treatment was withdrawn after week 28
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Complexities of Describing Derived Endpoints
in Skewed Distributions:

e Brief History of PASI Score Modeling
— Few publications pre 2020 - suggesting its difficulty

e Unpublished (Hutmacher ~2016): Censoring described PASI scores and
PASI 75, but biased in PASI 90/100

e Success in describing PASI scores and PASI 75/90/100 not achieved
until 2020, with Latent-beta

— Even in a highly sensitive subpopulation!

e 2021: latent-beta success in PASI score and PASI 75/90/100 repeated,
and another method applied

e 2022: latent-beta success repeated in a highly sensitive subpopulation

' AAAAAAAAAAAAAAAAAAAAAAAA



Complexities of Describing Reponses in
Highly Sensitive Subpopulations

e Response-adaptive study designs

— Induction-maintenance paradigm:
e Responders to initial treatment re-randomized to different "*maintenance” treatments

e Few successes in modeling "maintenance” data

Journal of Pharmacokinetics and Pharmacodynamics (2022) 49:283-291
https://doi.org/10.1007/510928-021-09796-3

ORIGINAL PAPER
Improving categorical endpoint longitudinal exposure-response

modeling through the joint modeling with a related endpoint

Chuanpu Hu' @ - Honghui Zhou'

e Requires getting between-subject variabilities right

-
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Another Family of Models: CUB

International Statistical Review (2018), 0, 0, 1-30 doi:10.1111/insr.12282

Cumulative and CUB Models for Rating
Data: A Comparative Analysis

Domenico Piccolo®™, Rosaria Simone and Maria Iannario

e Popular in psychological rating data analysis

e Motivated from the Binomial distribution
— Not a latent variable approach

— But still respect data nature
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CUB: Details

e Binomial distribution with total Binomial distribution

level = n: | Probability mass function
— Prob(score = k) = (Z)pk(]_ —p)n_k A * p=0.5and n=20
* p=0.7 and =20
— Distribution skewed (left, right) 2 'g:u.aandnzdu
when p (<,>) 0.5 i
e Random noise, i.e., Uniform: s _
— Prob(score = k) = 1/n = 8
e Combine the distributions, with
mixture probability =: _ :
— Combined Uniform Binomial (CUB) EL ol v
e Prob(score = k) = = (})p*(1 —p)"* ? ? » il 9
+ (1-7) /n

-
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Latent-beta vs CUB

The AAPS Journal (2020) 22:95 @

DOI: 10.1208/s12248-020-00478-5 Check for
updates

Research Article

Application of Beta-Distribution and Combined Uniform and Binomial Methods
in Longitudinal Modeling of Bounded Outcome Score Data

Chuanpu Hu,'? Honghui Zhou,' and Amarnath Sharma'

e Data: ustekinumab psoriasis Phase 2

e 320 patients randomized to receive SC injection in 5 arms:
- PBO (till Week 20), 45 mg, 90 mg, (45 mg weekly x4), (90 mg weekly x4)

e Data collected ~g4w during Weeks 0-32

-
' PHARMACEUTICAL COMPANIES
J a n S S e n ‘ ) Wﬂhen(‘wmtm‘



PASI Score VPC: CUB Somewhat Nuanced

e Latent-beta
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PASI 75/90/100 VPC: Latent-beta
Somewhat better in PASI 90

e Latent-beta e CUB
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More Details

Overall, VPC of latent-beta slightly better than CUB
— In both PASI scores and PASI 75/90/100

Latent-beta also has much better NONMEM OFV

- Improvement >400 over CUB

Uniform distribution in CUB too noisy?

- May need future verification

NONMEM implementation of latent-beta:

The AAPS Journal (2020) 22:61
DOI: 10.1208/s12248-020-00441-4

Check for
updates

Research Article

Applying Beta Distribution in Analyzing Bounded Outcome Score Data

Chuanpu Hu,'? Honghui Zhou,' and Amarnath Sharma'

-
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Model Parameters - Complexity

e Continuous: (mean, sd)

e Censoring: (mean, sd, censoring limits at boundary) -
2 extra parameters

e Ordered categorical: (intercepts) — many parameters!
e Coarsened Grid: (mean, sd)

e Bounded Integer: (mean, sd)

e Latent-beta: (mean, precision)

e CUB: (p, n)

' AAAAAAAAAAAAAAAAAAAAAAA



Which parameter to model?

e Modeling is typically done on the mean parameter

— As function of dose/exposure, etc.

e How about the variance/precision parameter, e.g., should it
be modeled as a function of the mean?
— Like “proportional error” in pharmacokinetics
— Used in BOS literature, though no clear evidence of need
e To avoid overfitting, likely best to keep variance/precision as

a constant parameter for BOS, unless clear reasons
supporting otherwise

' AAAAAAAAAAAAAAAAAAAAAAAA



Comparing the Methods: Confusion with AIC for
Pharmacometricians

The AAPS Journal (2019) 21:102 @

DOL: 10.1208/s12248-019-0370-6 Check for
updates

Commentary

On the Comparison of Methods in Analyzing Bounded Outcome Score Data

Chuanpu Hu'?

e AIC/BIC cannot be used to compare Continuous with Censoring
or categorical approaches

— “Likelihood” not comparable with changed data

- Same when treating data differently (numerical vs. categorical)!

e Category levels have no numerical meaning: cannot calculate “Low” +
\\Mild"
e Read Akaike (1974)

— Confusion in pharmacometrics literature even to-date

-
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Appropriate Method Comparisons

e Use AIC/BIC to compare only categorical approaches
- i.e., latent variable approaches, and CUB

e To compare approaches treating data differently, e.qg.,
continuous vs. categorical: Use VPC

— In abstract:

e Continuous scale will favor the continuous approach

e Categorical scale (proportion of achieving category) will favor the
Categorical approach

— (Another indication that Continuous/Categorical approaches are
not formally comparable)

— Choose the quantity/scale of practical interest

J a n S S e n ‘ :: Lg;r;lfi;:jig:g:ﬁij:ph I



Summary: Which Method to Use, When?

e Use Ordered Categorical when possible, even if >10 categories

e If not (i.e., too many intercepts to estimate):

— OK to use Continuous, if
e Symmetric data
e Tight timelines

— OK to use Censoring, if
e Skewed data
e Do not care about esthetics, or predicting outside data range

— Can use Coarsened Grid / Bounded Integer, if
e Near-symmetric data

— (Should?) use Latent-beta

e The only method shown to describe derived endpoints, in a highly sensitive
subpopulation

— Might consider CUB

-
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References: See within
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DOI: 10.1208/512248-019-0370-6 Check for
updates

Commentary

On the Comparison of Methods in Analyzing Bounded Outcome Score Data

Chuanpu Hu"*

The AAPS Journal — (2020) 22:95
DOI: 10.1208/512248-020-00478-5 il

updates

Research Article

Application of Beta-Distribution and Combined Uniform and Binomial Methods
in Longitudinal Modeling of Bounded Outcome Score Data

Chuanpu Hu,"? Honghui Zhou,' and Amarnath Sharma’
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