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Outline

1. A modeling framework to build kinetic models 
with complex drug-protein interactions

2. A predictive model for the targeted inhibition of 
oncogenic MAPK signaling in cancer



Understanding complex drug-protein interactions is
essential for Quantitative Systems Pharmacology
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Complex drug-protein interactions are due to positive and 
negative cooperativity and must be considered in drug studies
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Complex drug-protein interactions
appear in multiple scenarios with therapeutic relevance

Immune checkpoint
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Quantitative Systems Pharmacology relies on kinetic 
modeling to describe and understand drug action

i.e. Kinetic modeling

QSP workflow



Kinetic modelling requires writing ODE systems that 
properly describe molecular complexity of biological system 

Biological system

MAPK signaling pathway – from CST

Ordinary differential equation systems



Kinetic modeling for QSP requires describing 
complex drug-protein interactions

Pathway interactions

MAPK signaling pathway – from CST Degirmenci et al, 2020 Cells 

Drug-protein and protein-protein interactions

BRAFV600E

oncogene

Physiological RAF 
signaling1)

2)



A toy example of RAF and RAF inhibitors to introduce a 
framework for kinetic modeling with energy description

R: RAF (target) I: RAF Inhibitor (drug)

R + I ↔ RI KRI

Reaction Dissociation constant

R + R ↔ RR KRR

R IRI
Binding schema:

Thermodynamic factors 

Kholodenko, 2015, Cell Reports

f = KRRI / KRI fold change in drug 
affinity to 1st RAF in dimer

g = KIRRI / KRI fold change in drug  
affinity to 2nd RAF in dimer

RR + I ↔ RRI f ⋅ KRI

RRI + I ↔ IRRI g ⋅ KIRRI

Cooperative reactions

Components:



The two problems in properly describing drug-protein 
interactions: combinatorial and contextual complexity

1. Combinatorial complexity: 
the explosion of the reaction network 
size due to combinations of multi-
domain protein and drug interactions

2. Contextual complexity:
the constraints in cooperative reaction rates 
due to context-dependency of cooperative 
interactions

𝑑𝑑 ⁄[𝑹𝑹] 𝑑𝑑𝑑𝑑 = 𝑘𝑘𝑅𝑅𝑅𝑅− 𝑹𝑹𝑹𝑹 +. .

𝑑𝑑 ⁄[𝑰𝑰] 𝑑𝑑𝑑𝑑 = 𝑘𝑘𝑅𝑅𝐼𝐼− 𝑹𝑹𝑰𝑰 +. .

𝑑𝑑 ⁄[𝐑𝐑𝐑𝐑] 𝑑𝑑𝑑𝑑 = 𝑘𝑘𝑅𝑅𝐼𝐼+ 𝑹𝑹][𝑰𝑰 +. .

𝑑𝑑 ⁄[𝐑𝐑𝐑𝐑𝐑𝐑] 𝑑𝑑𝑑𝑑 = 𝑓𝑓 𝑘𝑘𝑅𝑅𝐼𝐼+ 𝑹𝑹𝑹𝑹][𝑰𝑰 +. .

ODE model

𝑑𝑑 ⁄[𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑] 𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑓𝑓𝑘𝑘𝑅𝑅𝐼𝐼+ 𝑰𝑰𝑹𝑹𝑹𝑹][𝑰𝑰 +. .

R

RR

IRRI

RI

RRI

KRR

KRI

f⋅KRI/2

f⋅KRR/2

f⋅g⋅KRR

g⋅2⋅KRI

Detailed balance must be satisfied!



Classic rule-based modeling solves combinatorial
but not contextual complexity problem

R+R ↔ RR

R+I  ↔ RI 

: KRR (k+
RR,k-

RR)

Reaction rules: 

: KRI (k+
RI,k-

RI)

R

RR

KRR

RIKRI

KRI/2 RRI

KRR/2 IRRI

KRR

2⋅KRI

Rates independent of context 
= no cooperativity !



How to solve the problem of building kinetic models with 
combinatorial and contextual complexity?

Solution:

Rule-based modeling
with energy descriptions*

*Hogg JS, PhD Thesis, 2013, Faeder lab@UPitt



Rule-based modeling with energy descriptions solves 
combinatorial and contextual complexity at once

R+R ↔ RR

R+I  ↔ RI 

Reaction rules: 

R

RR

RI

RRI

IRRI

: KRR (k+
RR,k-

RR)

: KRI (k+
RI,k-

RI)

Energy Patterns (kJ/mol): 
ep(RR)= log(KRR) 
ep(RI)=  log(KRI)
ep(RRI)=  log(f) 
ep(IRRI)= log(f⋅g) 

Baseline energies (kJ/mol):

E0
RR= ∅⋅log(KRR)−log(k+

RR)

E0
RI = ∅⋅log(KRI)−log(k+

RI)



Rule-based modeling with energy descriptions solves 
combinatorial and contextual complexity at once

R

RR

RI

IRRI

R IRI

log(KRI) log(KRR) log(f) log(f⋅g)

ΔG=log(KRR)

ΔG=log(KRI)

RRI

ΔG=log(KRR)+2⋅log(KRI)+log(f⋅g)

Energy Patterns (kJ/mol): 

ΔG=0

Energy difference
∆𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟0 = ΔGsub- ΔGprod

ΔG= log(KRR)+log(KRI)+log(f)



Rule-based modeling with energy descriptions solves 
combinatorial and contextual complexity at once

R

RR

RI

IRRI

RRI

ΔGrnx =log(KRR)

ΔGrnx=log(KRI)

ΔGrnx = 
log(KRI)+log(f)

ΔGrnx =log(KRR)+log(f⋅g)

ΔGrnx= log(KRI)+ log(g)

ΔGrnx = 
log(KRR)
+log(f)

R IRI

log(KRI) log(KRR) log(f) log(f⋅g)

Energy Patterns (kJ/mol): 

Energy difference
∆𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟0 = ΔGsub- ΔGprod



The theory behind the energy formulation in 

From Justin Hogg PhD Thesis 2012 & 
Sekar et al 2017 BIBM -Faeder Lab@UPitt

𝐸𝐸0 ∅∆𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟0

baseline activation
energy

rate 
distribution

free energy 
change

Linear transition state theory. The activation 
energy is linearly related to the standard 
change in free energy of a reaction:

Arrhenius equation. The reaction rate 
constant of a reaction is determined by the 
activation energy: 

k = C � exp
−EA
RT

EA = 𝐸𝐸0 + ∅ � ∆𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟0

k𝑜𝑜𝑟𝑟 = 𝐶𝐶 � exp(−𝐸𝐸0+∅�∆𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟
0

𝑅𝑅𝑅𝑅
)

k𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐶𝐶 � exp(−𝐸𝐸0+(∅−1)�∆𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟0

𝑅𝑅𝑅𝑅
)

Conversion rules from energies to kinetics:



Rule-based modeling with energy descriptions solves 
combinatorial and contextual complexity at once

R

RR

RI

IRRI

RRI

Baseline energies (kJ/mol):

ΔGrnx =log(KRR)

ΔGrnx=log(KRI)

ΔGrnx = 
log(KRI)+log(f)

ΔGrnx =log(KRR)+log(f⋅g)

Rate distributions:

∅RR

∅RI

k𝑜𝑜𝑟𝑟 = 𝐶𝐶 � exp(−𝐸𝐸0+∅�∆𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟
0

𝑅𝑅𝑅𝑅
)

k𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐶𝐶 � exp(−𝐸𝐸0+(∅−1)�∆𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟0

𝑅𝑅𝑅𝑅
)

Conversion rules:

ΔGrnx= log(KRI)+ log(g)

ΔGrnx = 
log(KRR)
+log(f)

E0
RR= ∅RR⋅log(KRR)−log(k+

RR)

E0
RI = ∅RI⋅log(KRI)−log(k+

RI)



Rule-based modeling with energy descriptions solves 
combinatorial and contextual complexity at once

R

RR

RI

IRRI

RRI

Baseline energies (kJ/mol):

E0
RR= ∅RR⋅log(KRR)−log(k+

RR)

E0
RI = ∅RI⋅log(KRI)−log(k+

RI)

Detailed 
balance 

is SATISFIED 
by construction!

k+
RRk−RR

k−RI

k+
RI

f(1−∅RI)⋅k−RI

2⋅f(−∅RI)⋅k+
RI

2⋅f(1−∅RR)⋅k−RR f(−∅RR)⋅k+
RR

Rate distributions:

∅RR

∅RI

k𝑜𝑜𝑟𝑟 = 𝐶𝐶 � exp(−𝐸𝐸0+∅�∆𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟
0

𝑅𝑅𝑅𝑅
)

k𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐶𝐶 � exp(−𝐸𝐸0+(∅−1)�∆𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟0

𝑅𝑅𝑅𝑅
)

Conversion rules:



Rule-based modeling with energy descriptions solves 
combinatorial and contextual complexity at once

RR RRIf(1−∅RI)⋅k−RI

2⋅f(−∅RI)⋅k+
RI

Automatically derived rates: Dissociation constant: 

f(1−∅RI)⋅k−RI

2⋅f(−∅RI)⋅k+
RI

=
f(1−∅RI+∅R)⋅k−RI =2⋅k+

RI 2

f⋅KRI

f=0.01 ∅RI =1 (on k+)

∅RI =0 (on k−)

∅RI =0.5 (shared)

RR RRI
k−RI

2⋅100⋅k+
RI

RR RRI
0.01 * k−RI

2⋅k+
RI

Thermodynamic 
factor

Distribution
rate

RR RRI
0.1 * k−RI

2⋅10⋅k+
RI

2

0.01⋅KRI

k−

k+
=



PySB with support for eBNG allows to write energy-balanced 
kinetic models as compact python programs

PySB extended with energy BioNetGen
by Jeremy Muhlich

ODE systemPySB code (Python)

R: RAF
I: RAFi
A: RasGTP R IRI

AA
log(f)
log(f⋅g) 

log(h) 



A toy kinetic model with energies recapitulates the efficacy
of different classes of RAF inhibitors

“1st generation”   “paradox breaker”     “panRAF”
f=0.001, g=1000         f=1, g=1000           f=0.001, g=1

Active RAFs  in a 
BRAFV600E cancer cell
(all R not bound by I)

R

RR

RRI

IRRI

RAF inhibitors 

RAFi (uM)



Conclusions on rule-based modelling framework with energies  

• Remapping kinetic parameters as energies using energy patterns allows to solve 
the combinatorial and contextual complexity of kinetic models at once

• Convenient description of high-order cooperativity in drug-protein and protein-
protein interactions

• Applicable to much more complex biological descriptions with multiple high-order 
cooperativities as for example: 
o Mutations, PTMs, asymmetric complexes, localization, etc..

• Newly implemented support for energy-BNG in PySB allows to write kinetic models 
with energy description as compact Python programs 



Construction of a mechanistic model of MAPK signaling 
with high-order cooperativity in drug-protein interactions

MAPK signaling cascade 
in BRAF-mutant cancer

Proteins: 11
Drugs: 2 
Reaction Rules: 54
Energy Patterns: 27
Parameters: 63
Protein Complexes (ODEs):  1007
Reactions: 13164



The MAPK signaling model with energy descriptions properly
accounts for complexity of protein and drug-protein assembly

Interaction diagram

Examples of complex drug-protein species



Large-scale parameter fitting provides estimations for the 63 
kinetic and energy parameters determining MAPK signaling

by Fabian Fröhlich

Parameter fitting pipeline 63 estimated parameters

Value (log10)



Kinetic parameters show that drug resistance to RAF and MEK 
inhibitors is due to RAF dimers assembled by receptor activation

ParametersModel fit to data

A375 melanoma cell line

RAS-RAF-RAFi

MEK-MEKi



Modelling predicts wide dose range of combined RAF/MEK 
inhibition in which receptor-driven ERK signaling is possible

2

27

A375 melanoma cell line



RasGTP

MEK

ERK

RAFi
MEKi

BRAF* RasGTP

MEK

ERK

RAFi
MEKi

RasGTP activation by receptors or mutations is resistant 
combined RAF and MEK inhibitors

A375 EGFR 
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EGFR expressing

(colorectal)

A375 
with NRAS Q61K 
overexpression 
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ur
af

en
ib

(R
AF

i)
CMAX

Cobimetinib (MEKi)

Experimental
validation of
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+EGF(8h)
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BRAF*

MEK
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RAFi
MEKi

28



pMEK pERKSimulated and 
experimental (CRISPRa) 
overexpression of EGFR

by x10 times
+ EGF (8h)
- EGF

The model accurately predicts resistance through MAPK 
reactivation driven by EGFR overexpression

Modelling

Experiments



The model accurately predicts resistance through MAPK 
reactivation driven by RAS mutations

Experiments

Modelling

NRASQ61K

pMEK pERK

RAFi Vemurafenib (uM)                 

MEKi Cobimetinib (uM)                 

RAFi (fixed 1 uM) + MEKi (uM)                 

+NRAS Q61K (+Dox)
no Dox

Simulated and 
experimental (Dox inducible) 

expression of NRASQ61K

with x10 lower GTPase activity 



Conclusions on modeling complex drug-protein interactions 
in the MAPK signaling of BRAF-mutant cancers

1. MAPK reconfiguration by Ras 
signaling assemble RAS-RAF-MEK 
complexes with lower affinity for 
drugs.

2. Genetic and adaptive resistance  
to RAF/MEK inhibitors is through 
MAPK reconfiguration

3. Likely both a source of drug 
resistance and drug tolerability



Outlook: Energy-based kinetic modeling is ideal to integrate structural 
biology information and omics data into predictive models

Mutational status 

PK/PD analysis

Drug design

Drug combinations

Energy-based kinetic
modeling

Protein abundances and PTM

Drug-protein conformations

Molecular dynamic simulations



Resources

• Code for this webinar: https://github.com/lgerosa/rosa_webinar_20Jan2021 
 Toy examples of thermodynamic model implementations in PySB

• MAPK model: https://github.com/labsyspharm/marm1-supplement
 Receptor-Driven ERK Pulses Reconfigure MAPK Signaling 

and Enable Persistence of Drug-Adapted BRAF-Mutant Melanoma Cells
Gerosa L, et al. - Cell Systems, 2020

• PySB: http://pysb.org/
 Programming biological models in Python using PySB

Lopez CF, Muhlich JL, Bachman JA, Sorger PK - Molecular systems biology, 2013

• Foundational work:
o Energy-BNG by Faeder lab @ UPittsburgh:

 Advances in Rule-based Modeling: Compartments, Energy, and Hybrid Simulation, with Application to 
Sepsis and Cell Signaling, Hogg JS , PhD Thesis , U Pitt - 2013

 Energy-based modeling in BioNetGen, Sekar JAP, Hogg JS , Faeder JR       
IEEE International Conference on Bioinformatics and Biomedicine - 2016

o Thermodynamic derivations by Kholodenko lab @ UCDublin
 Drug resistance resulting from kinase dimerization is rationalized by thermodynamic factors 

describing allosteric inhibitor effects, Kholodenko BN , Cell reports - 2016
 Dissecting RAF inhibitor resistance by structure-based modeling reveals ways to overcome oncogenic 

RAS signaling, Rukhlenko OS , et al, Cell systems – 2018

https://github.com/lgerosa/rosa_webinar_20Jan2021
https://github.com/labsyspharm/marm1-supplement
https://pubmed.ncbi.nlm.nih.gov/33113355/
http://pysb.org/
https://pubmed.ncbi.nlm.nih.gov/23423320/
http://d-scholarship.pitt.edu/19621/
https://ieeexplore.ieee.org/document/7822739
https://pubmed.ncbi.nlm.nih.gov/26344764/
https://pubmed.ncbi.nlm.nih.gov/30007540/
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