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Outline
Cardiotoxicity caused by tyrosine kinase inhibitor drugs (TKIs)

Integrated experiments & modeling address toxicity mechanisms
« Assessment of changes in gene expression
« Simulations with mechanistic models
e Cellular physiology experiments

Results: Individual-specific changes in arrhythmia susceptibility
caused by drug-induced changes in gene expression

Future directions



Tyrosine Kinase Inhibitors (TKIs)

Revolutionary treatments for several cancers
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Cardiotoxicity of TKIs
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Mechanisms underlying cardiotoxicity are poorly understood



Many TKIs cause cardiotoxicity

nd

Types of inhibitor

raf

nit

o o
©

—_

vat

=
—

0
l:f -ABL / Multi-target
5 B EGFR & ERBB2 / Multitarget
3
g | VEGFR/Multi-target
=}
Z -Other / Multi-target
| VEGFR/ABL/Muttitarget
N EGFR & ERBB2/VEGFR/ Multi-target
Pathology related to

direct toxicity on

cardiomyocytes _>= Shim et al. (2017) Front. Physiol. 8:651.

Qo Qo

%O é\O 0?{(/
Q;(\ .,s\\\) @
& @ Q}b
&° ¢
> N

© ©

Q2 P



Goal: elucidate patient-specific cardiotoxicity mechanisms

Normal (Asymptomatic) Assumption
—_— Applying high drug concentrations to kill myocytes is a poor
TKI toxicity model
Hypothesis

Subject A Subject B : .
uplec = “Two-hit.” TKIs may alter gene expression in myocytes such

[ 1 L] that cells become susceptible to additional insults

Endothelin 1@ Hypokalemia " Drug responses may be specific to cell lines from particular

- individuals
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Approach

Step 1: integrate gene expression data with mechanistic
mathematical models to generate predictions
Step 2: test predictions experimentally to support or refute

hypotheses
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Methodological Detalls

= How do we obtain the gene expression data?
= What mathematical models do we use?

= What are the experimental tests?



Experimental Design for Gene Expression Data

s Treatment
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Human cardiomyocytes derived from iPSCs

Drug Treatments

Protein kinase inhibitors — many with cardiac risk
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Mechanistic cardiac myocyte models

Models simulate ionic currents, intracellular ionic homeostasis

Models have been developed over ~50 years of basic physiology research
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Pipeline: patient-specific predictions based on transcriptomic data

| | |
K1 loca NaCa NaK Parameter Genes

B g s s

CACNA1C * all voltage gated calcium channel *

G, CACNA1S,CACNA1D,CACNA1B,CACNA1I,CACNA1G,CACNA1H,
CACNA1A, CACNA1E,CACNA1F,CACNA1C,CACNA2D1
G,, KCND2, KCND3, KCNA4, KCNA7
G,. KCNQZ, KCNE1
Gy, KCNH?2
Gy, KCNJ2, KCNJ12
Electrophysiology: Paci et al Ann BME 2013 Prak ATP1A1
Contraction: Rice et al Biophys J 2008 e ATP2A2
Goc, ATP2B4
G, HCN2, HCN4
Knaca SLC8AL
Troponin TNNC1
Assumptions: el MYH6, MYH7
Actin ACTC1

* Model parameters correspond to defined genes
* mRNA levels are proportional to activities
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Methods for experimental tests

1- Stem cell derived cardiomyocytes (iPSC-CMs)

2- Electrically stimulate cells FlUO3-AM

FluoVolt

3- Record [Ca?*] or action potentials as function of location and time
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Why integrate Omics data with mechanistic models?

= Omics measurements are generally snapshots. Simulations can predict

dynamics.

= Simulations both generate predictions and suggest prioritization of
experiments.
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Individual-specific predictions of altered electrophysiology

Cell Line A
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Individual-specific predictions of altered contraction

Cell Line A
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Which modeling predictions should we test?

Simulations allow for efficient prioritization

(1) Drugs that are predicted to have meaningful effects
(2) Drugs that influence both electrophysiology and contraction

(3) Drugs whose effects are predicted to differ between cell lines

Drugs were selected based on these criteria
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iPSC-CM cultures

Experimental tests of individual-specific predictions
Cell Line A
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* [Ca?'] decay time constant
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* Ca?* transient triangulation

[Ca%*] area under the curve
4 metrics x 4 drugs x 2 cell lines
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Why integrate Omics data with mechanistic models?

= Simulations can predict effects of drugs in combination, or of a TKI plus a
physiological stimulus (B-adrenergic stimulation, angiotensin, stretch, etc.).
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Simulation and experimental protocol

Step 1: Implement Drug-induced changes in gene expression
Simulate drug-induced alterations to action potentials and [Ca?*]

Step 2: Apply pathological stimuli

Predict changes in cellular susceptibility to arrhythmia triggers
Rank drugs for testing based on simulation results

Step 3: Test selected modeling predictions

Measure arrhythmia susceptibility in myocytes derived from stem cells

Important note: Both predictions and experimental tests are cell line-specific

Overall theme: 48 hours of drug treatment does not induce overt toxicity, but can

influence susceptibility to additional signals
20



Step 2: Pathological triggers
Most TKls are not considered cardiac ion channel blockers
Hypothesis: Gene expression changes may alter susceptibility to arrhythmia triggers

Protocol: simulated hypokalemia

Proarrhythmicrisk : progressively lower extracellular [K*] until arrhythmia is seen

| [K]=$.4mM [K]={l.14n’!M | [K]=3.3mM [K] 2 9mM [K] 2 66mM

Arrhythmla Arrhythmla

Normal é Cllnlcal hypokalemla é Severe hypokalemia

Effects of all TKIs were simulated; interesting predictions were selected for testing
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Predictions are cell-line dependent: Cell line 1

[K*] = 5.4 mM [K]=41mM  [KY]=29mM

S {3 *
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7 20 A A
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Arrhythmia

[K*] = 2.5 mM
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A

Arrhythmia

Trametinib
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Trastuzumab

Ponatinib

Subject A: Trametinib & Cabozatinib are toxic; Trastuzumab & Ponatinib are protective
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Predictions are cell-line dependent: Cell line 2

[K*] = 5.4 mM
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[K*] = 5.4 mM

=

500ms

500ms

500ms

Experimental tests: Cell line 1
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[K*] = 5.4 mM
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Hypokalemia summary data: Arrhythmia susceptibility

Subject A: Trametinib & Gefitinib are toxic Subject B: Trastuzumab & Bevacizumab are toxic
Trastuzumab & Ponatinib are protective Trametinib & Gefitinib are protective
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Hypokalemia data: Reproducibility of experiments
iPSC-CMs can be idiosyncratic. Did we get lucky with particular cell differentiations?

CellLine A Cell Line B
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[Ca?*] and action potential experiments were performed 3-6 months apart



Why integrate Omics data with mechanistic models?

= Modeling results can suggest mechanisms underlying differences between
drugs or drug classes.
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Why integrate Omics data with mechanistic models?

= Modeling results can suggest mechanisms underlying differences between
drugs or drug classes.
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Mechanisms underlying arrhythmia susceptibility

Simulate control and TKI-treated cells at reduced [K*]

Compute change in total charge (integrated current) through each ion channel

Repolarizing Currents
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Mechanisms underlying arrhythmia susceptibility
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Future Directions: further testing these hypotheses

Validate the changes in ionic currents that are predicted to be critical to altered
arrhythmia susceptibility

More cell lines from healthy volunteers. Is there something unusual about one
of the two that we tested?

Correlate iPSC-CM susceptibility with clinical outcomes
* Collaboration with Angel Chan, Memorial Sloan Kettering

= Patients who developed trastuzumab cardiotoxicity

Expand the mathematical modeling pipeline to incorporate additional
cardiotoxicity mechanisms

32



Future Directions: PredicTox Knowledge Environment |-r|_)
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Conclusions

Combining mRNAseq data with mechanistic models allows us to address
the causes of drug-induced cardiotoxicity

Simulations allow us to rank drugs within a class, compare drug classes,
and prioritize physiological experiments

Results suggest that short-term treatment with TKIs does not induce overt
cardiotoxicity, but can influence susceptibility to physiological stimuli
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