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Current drug discovery: long, costly, high failure
Goal: transform early drug discovery to get drugs to patients faster
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» 33% of total cost of medicine development
 Clinical success only ~12%, indicating poor translation in patients

Source: http://www.nature.com/nrd/journal/v9/n3/pdf/nrd3078.pdf
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ATOM is an open public-private partnership for accelerating drug

discovery

Goals

* Accelerate the drug discovery process

* Improve success rate in translation to
patients

Approach
« Computation-driven drug design, supported and
validated by targeted experiments

High-performance

. . . computing
« Data-sharing to build models using everyone’s
data
Product
* An open-source platform for active-learning ~ Diverse Emerging
based molecular design and optimization biological data  experimental
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ATOM provides an open platform, models, and data for a
rapidly diversifying drug development ecosystem

University drug development Neglected disease communities
teams o  Platform and research for drug design
» Open tools to develop and optimize orojects for public good
molecules « New partnerships to expand the open
. Advancmg further up the development A-I-O M research community
\éadlue chain § training - Broad access to data
ap;ri)a;fhne:n training in new . Open platform,
models, and data
Pharma and biotech * Public-private Govern_ment programs
+ Precompetitive design R&D community aglvancm_g public health and
optimization technology biosecurity
* Open R&D on emerging . * Open platform supporting rapid
technology, methods, and Computlr.lg technology response programs
workflows community * Public-private partnership programs
« Complex problems challenging and » Support for interagency
extending Al and HPC capabilities collaboration

» Scalable and supported approaches
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Building new predictive models
Machine learning frameworks
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The ATOM Platform

Active Learning Drug Discovery Framework
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The ATOM Platform
Active Learning Drug Discovery Framework - Data management and access

Property Prediction Pipeline environment

Efficacy

 AMPL pipeline — training and
. optimization for property prediction
models

Multi-level | Systems
models models

Developability

Working
Compound

» Generative model training

» Systems and mechanistic models

; ) Generative
ramewor “‘f Molecular Design
« Generative molecular design loop ' proposes new molecules with h

optimized properties

Active learning
decides if/when a simulation or
experiment is needed to improve

or validate models
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» Structural models
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To build these workflows ATOM is focusing on several
technical challenges

Challenges

Approaches

Building a foundation
of diverse
open data sets

Predictive models

for human relevant
chemical properties

Active learning based
molecular design

ﬂ)reating partnerships to\

build and curate public
data repositories

* Analysis and integration of
data from multiple sources

» Targeted generation of
new, human-relevant data

o /

ﬂeveraging rapid progressh

Al methods to improve
performance and transfer to
humans

« Broadening domain of
applicability through secure
integration of multisource
models

» Using mechanistic models

to effectively expand the

Qatasets /

ﬂ)esign in a rigorous UQ \

framework

* Integrated multiparameter
optimization of therapeutic
window

« Optimal experimental
design to drive active
learning

* Automated chemical

synthesis and assays in
\active learning loop /
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» Upload files to
Datastore via GUI or
API.

* Access control via Unix

groups

ChEMBL
KEGG
PDB

jupyter
N’

interactive

debugging

output files
* GUI and REST API

* Acts as front end for

development
» Also set up VNC to
enable use of IDE for

* Contains all input and

* Deploy parallelized runs
for hyperparameter
search

* Memory/GPU/CPU-
intensive jobs

* Molecular design loop




Expanding our data foundations
Curated model-ready datasets
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Target

ATOM has built models for hundreds of pharmaceutical data sets

Safety Datasets Pharmacokinetic Datasets
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The ATOM data strategy

1. Work with available public data sources to build baseline safety
and PK models

2. Expand databases using commercial data sources where
required

3. Establish and enable open data partnerships to grow public data
sources

4. Collect targeted data sets to fill gaps and emerging needs in
open data

ATOM 13



We’'re working with multiple data sources

CHEMBL — Manually curated repository of bioactive molecules
« Sponsored by European Bioinformatics Institute (EMBL-EBI)
* 1.9M compounds, 11K targets

Excape-DB — Exascale Compound Activity Prediction
« EU program on predictive modeling for compound activities
1M compounds, 1.7K targets

Excelra GOSTAR

« Commercial database

« 7.8M compounds, 9.3K targets

« Derived data products (e.g. models) are open

Drug Target Commons — An open multi-database platform for curation with common ontology
« Sponsored by University of Helsinki

» Largest source is CHEMBL

 1.7M compounds, 13K targets

ATOM 14




ATOM Modeling
PipeLine (AMPL)
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The ATOM Modeling PipelLine (AMPL)

An open source software library for building and sharing machine
learning models that predict bioassay activities or molecular
properties from chemical structures

/
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From chemical structure and bioassay/property data to model to prediction
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End-to-End Data-Driven Modeling Pipeline

Common infrastructure in place and ready to receive/transform new data

Benefits:

Easy integration of diverse datasets

Integration with scalable data and model services environment
High-performance hyperparameter optimization

Rapid evaluation of model architecture

Seamless HPC integration using world-class compute systems

Ensemble integration of models from multiple sources )

Data Ingestion &
Curation

*Granular Access Control
*Python Query/Access APls
*Data Taxonomy

*Web Interface

* Audit trail/ versioning

s

ATOM 1




Modeling uncertainty

« Random Forest
» Calculate the standard deviation of predictions from individual trees

 Neural Networks

« Use DeepChem’s method, which combines aleatoric (sensing
uncertainty) and epistemic (model uncertainty) values (Kendal and Gal
2017)

 Aleatoric: Modify loss function and train model to predict both response
variable and input variance

« Epistemic: Apply dropout masks during prediction and quantify
variability in predictions

. _ . 2 . . 2
Then Ototal = \/Ualeatorlc + Oepistemic

ATOM



Model uncertainty is critical to active learning and remains an

open challenge

Uncertainty/prediction bias

Calibration curve
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Model derived uncertainty varies depending on the model and

dataset

Uncertainty/prediction bias

Calibration curve
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Model derived uncertainty varies depending on the model and
dataset

Plasma binding (HSA) Microsomal clearance
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AMPL has been released open source

README.md

AMPL: A Data-Driven Modeling Pipeline for Drug Discovery

. . . . Amanda J. Minnich, Kevin McLoughlin, Margaret Tse, Jason Deng, Andrew Weber, Neha Murad, Benjamin D. Madej, Bharath Ramsundar, Tom Rush,
ATOM Modeli ng Pi pe Line (AMPL) for Dru g9 Discove ry Stacie Calad-Thomson, Jim Brase, and Jonathan E. Allen*

@ Cite this: J. Chem. Inf Model. 2020, 60,4, Article Views Altmetric Citations Share Addto Export

Created by the Accelerating Therapeutics for Opportunites in Medicine (ATOM) Consortium 1955-1968 1 5 6 5 4 1 @ @
Publication Date: April 3,2020 v
A ‘ Q M Ptps /o g/ 10,1021 fcs jeim 9bOT053 AR ABOUT THESE METRLCS
Copyright © 2020 American Chemical Society
RIGHTS & PERMISSIONS @ ACS AuthorChoice

AMPL is an open-source, modular, extensible software pipeline for building and sharing models to advance in silico drug
discovery.

The ATOM Modeling PipeLine (AMPL) extends the functionality of DeepChem and supports an array of machine

learning and molecular featurization tools. AMPL is an end-to-end data-driven modeling pipeline to generate machine httDS//DUbsaCSOrg/dOI/fU||/1 O 1 02 1 /aCS |C|m 9b01 053

learning models that can predict key safety and pharmacokinetic-relevant parameters. AMPL has been benchmarked on
a large collection of pharmaceutical datasets covering a wide range of parameters.

A pre-print of a manuscript describing this project is available through ArXiv. readthedocs are available as well here.

https://github.com/ATOMconsortium/AMPL
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https://github.com/ATOMconsortium/AMPL
https://pubs.acs.org/doi/full/10.1021/acs.jcim.9b01053

Building new predictive models
Human-level system models
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Modeling frameworks support the ATOM workflow

* Human PBPK model

* Drug-induced liver injury
model

Property Prediction Models

Machine Human-

Multi-Parameter

learning | - level Optimization Loop
parameter SYStemS
PK models models

Working Design Crterio
Compound .
Library '

Generative Molecular Design

Proposes new

molecules with a "
optimized ‘r’

properties

Active learning decides
if/when a simulation or experiment

N

J

Retrain property olecular Feature Simulation is needed to improve or validate
prediction models —A Simulations models
ALARALLL y ° - .
5 . Human-relevant = \ Chemistry Experlment
B E  assays, complexin ) Q Design &
E = vitro models Synthesis

ATOM
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Current PK modeling activities
A limited first case — Single ML model

Structure to Input Human PK Time-Concentration Summary PK
Parameters Simulator (PBPK) Profiles Parameters

4 ATOM ML ) = F

> ‘ ‘ > / Plasma Concentration Time Profile \
Lung 10¢
Parent Models ‘ « Plasma Pye
Molecule(s) Brain Dose 3 [
& & pe Dose 2 1
+ Parameters: ) Heart“ ®» 2
Va solubility,_ _ 5 Liver - g
permeability, pKa, S [ — P — «— 8 =
B/P - Gut |5 Organs 8
- ) » Kidney ’ P = s
« Data curation of in 3 ) 5 &
Y, vitro parameters 8 E"“e":’;,‘-’ : g
.. [[eJo S R— S
from existing T tissue 5
one
datasets « “ Tumor
* in vitro experiments o - 7 R = BT %
to fill data gaps Muscle o
Other Curated human in vivo data
\_ -/ T e )L (Obach, 2008; Lombardo, 2018)




Generating world class open data for PK modelling
Valuable data sets by combining curated and newly generated data

Started from in vivo Obach-Lombardo in-vivo data set and adding

ATOM Generated In Vitro data

300 compounds

* Hu Liver Microsomal
Clearance

* Hu Liver Microsomal Protein
Binding

* Plasma Protein Binding

» B/P Partitioning

* Log D (in progress)

Largest available set in vitro
PK data with human in vivo
data

ATOM Generated Novel
Human Cell Line Data

200 Compounds
« Myocyte Partitioning
» Adipocyte Partitioning

Unprecedented human-
relevant PK predictions

ATOM curated in-vitro and
in-vivo data

* In vivo and in vitro data for
Obach dataset (150-200
Compounds)

« ChEMBL datasets (ML
ready)

o Permeability
o LogD

o Log P

o Fup

o Microsomal Clearance (rat,
dog, human)

ATOM
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In silico methods to predict human steady state volume of distribution
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-
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In silico models to predict human steady state volume of
distribution on Lombardo Obach (2018) compounds

_m

Mechanistic ADMET mechanistic » Lukacova mechanistic model to predict tissue
partitioning (Kp)
« ADMET Predictor models
ATOM mechanistic « Lukacova mechanistic model to predict tissue
partitioning (Kp)
« ATOM models

Empirical Rat » Allometric scaling of predicted rat VDss

Dog « Allometric scaling of predicted dog VDss

Rat and dog » Allometric scaling of predicted rat and dog VDss
Direct ML Direct ML * Training and prediction on direct human VDss

ATOM 2



Predictions on ATOM in silico set (940)

ADMET mechanistic

Mechanlstlc ATOM mechanistic

Allometric: Rat
! [ [ |

Empirical Allometric: Dog

Allometric: Rat and dog

40 50 60
Percent within 2, 3, 10 fold

Predictions on ATOM experimental set (250)

70

80

(Also compared to methods using experimental fup, RBP, adipocyte and myocyte Kp)

90

100

ADMET mechanistic

Mechanistic

ATOM mechanistic

Empirical

40 50 60
Percent within 2, 3, 10 fold

OM

80

90

100 —
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Generative
molecular design
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ATOM Generative Molecular Design loop Proof-of-Concept

Generative molecular design of AURK B inhibitors

PILOT 1 Starting point: End point: Experimental
Early program data Optimization validation
Why Aurora Kinase?

« Cancer relevant: >30 clinical trials are ongoing or
completed for AURKA selective, AURKB selective, and
AURKA/B dual inhibitors

- Data available at ATOM: Potency data on ~24k
compound available for AURK B and/or AURK A

 Pharmaceutical discovery relevant problem:
Selectivity between kinases is an important and common
pharmaceutical discovery problem

Structure overlay of
AURK A and AURK B

ATOM 3



Proof-of-Concept

Design Criteria

Initial Compound
Library 4 Property Prediction Pipeline h

(3k compounds)

Candidate Quality Panel

Efficacy
AURK B (pIC50 > 9)
AURK B/A Selectivity > 1000

Safety
BSEP (pICy, < 4)
hERG (pICs, < 4)

Working Design
Compound Criteria

PK
Solubility (>10muM)
CLint (<3 mL/min/g)

0I0I0I0
eleJelelo
OO0 ()
D000 O

Developability
Solubility (>10uM)
SAS: Synthetic Accessibility Score

QED: Quantitative Estimation of Drug likeness

Encoder

ATOM 2



Our initial molecular design loop is based on multi-parameter
optimization in a learned latent space

Junction Tree Variational
Autoencoder (JT-VAE)

(Jaakkola, et al — published code)

Molecular modification in physical space lead to a very
discontinuous cost surface

Learned generative models provide a continuous latent space in
which small design changes lead to small changes in properties

Our initial implementations are based on junction tree
autoencoders

Trained on ~24K molecular structures associated with AURK A or
B

For expanding design into new chemical spaces we need to
expand the training set to ~1B molecular structures

Not possible with current learning frameworks and systems — a
target for DOE ML learning systems: LBANN and CANDLE

33



High Performance Compute Facilitates Large Scale Search
Enables Scalable Management of Heterogeneous Compute Tasks

» Facilitated ideation and evaluation of >3 million compounds in 24 hour run time
« Future scaling by 10x or more achievable on current, 100 node clusters
» Flexible, object-oriented worker framework allows for future addition of systems and physics-based modelling

Setup and AMQP (Rabbit MQ) Exchange Brokered HPC Environment

Configuration
De Novo = Batching Optimization
= e w

Generation
Aggregation

CPU-bound

Node Allocation
and Service
Start-up

Initial Library
Preparation

Molecular
Featurizers

Predictive ML —) Compound

Batching Models Scoring

CPU-bound, distributed
GPU-bound, distributed

AT Q M Code going through open source process now, requires (for now) SLURM job schedular 34




~200 Compounds with high potency, selectivity, and

other favorable properties

Proof-of-Concept

AURK B vs. AURK A pIC50

11

10

9

8
o
(e}
<
O 7
o
m ’

6 ' /" .

5 ‘ Legend: )

* All AURK (measured)
* First 6 months (measured)
4 * Best 250 Designed (predicted)
# AURK in Clinical Trials
=== Unity
3 +==100 Fold Selectivity
3 4 5 6 7 8 9 10
A pIC150

11

Other predicted properties for top compounds:

Generated AURK B AURK.B./A BSEP hLM Solubility
Selectivity 'hERG plC50 N Clearance SAS
Compound plC50 plC50 . ug/mL
(fold) mL/min/g
Cmpd 1 9.2 5287 3.3 43 3.6 1096 2.5
Cmpd 2 9.3 3233 3.2 4.2 2.5 399 2.4
Cmpd 3 9.6 11512 3.6 4.4 2.2 412 2.6
Cmpd 4 9.6 2449 3.2 43 2.5 60 2.3
Cmpd 5 9.7 3068 3.3 43 2.0 1155 2.5
Cmpd 6 9.6 5756 3.7 4.5 43 232 2.3
Cmpd 7 9.3 3296 3.3 4.4 2.6 33 2.4
Cmpd 8 9.1 1197 3.3 4.2 2.4 268 2.5
Cmpd 9 9.2 7724 3.3 43 2.3 733 2.7
Cmpd 10 10.1 2270 3.2 4.5 2.6 139 2.4
Cmpd 11 9.8 9948 3.2 4.8 5.0 93 2.4
Cmpd 12 9.7 3555 3.4 4.2 3.6 739 3.1
Cmpd 13 9.2 12116 4.1 4.1 2.1 1741 2.7
Cmpd 14 9.0 1951 3.2 4.2 5.0 343 2.5
Cmpd 15 9.3 3573 3.4 4.4 5.7 1248 2.7
Cmpd 16 9.2 5334 3.9 4.5 4.9 155 2.5
Cmpd 17 9.5 2277 3.2 4.8 5.3 78 2.2
Cmpd 18 9.2 5439 3.3 4.5 2.2 74 2.6
Cmpd 19 9.9 2372 3.2 4.7 4.4 689 2.5
Cmpd 20 9.3 8071 3.4 4.6 3.8 1332 2.8
criteria met Close to criteria criteria not met

35



Make Test Results — On Target Pharmacology
Significant Enrichment of High Quality Compounds!

Rediscovery of Compounds in “Hold Out”

De Novo Synthesis & Testing Confirms Enrichment Library Further Confirms Accuracy of
of High Potency Compounds Models for Generated Compounds
11 y=1.09x-0.18
Count AURK B Potency AURK BJ/A Selectivity e ECFP 075, *°**®
Very High High Highly Selective Selective 10 ° mgﬁ?& R .;;:.--
(pICs0 > 9) (pICso >8) | (>1000 fold) (> 100fold) § ® MakeTest Mordred °s --h{ .
Initial Library 3114 s ° Bk : ‘\.’*,"é.mgx 0.34
(0.6%) (2.4%) (0%) (0.3%) < g ° cedte S e o e = 060
Full ATOM 18,582 69 316 7 34 2 % ..-".' °?
AURK Library (0.3%) (1.7%) (0.03%) (0.2%) 3’ .
Generated 84 16-43 58 2-35 9-42 g 6 ;
Compounds (19-51%) (69%) (2-42%) (10-50%) = . *
& ’
42 de novo compounds successfully synthesized and tested 4 = °
. . . 4 5 6 7 8 9 10 11
42 library available highly scored compounds sourced and tested Predicted AURKB plC50

ATOM a6



Achievement of Secondary Pharmacology In Alignment with
Predictions

» Generally >70% of compounds tested are as good or better than the
models predicted

 Selectivity and hERG are more difficult

Compounds At Target

Criteria Target Total In Target Within 1 log 0
Tested Range of target 0
(Predicted) 70 I I L] . ]

0 O

AURK B pICs, > 9 16-43 (37) 58 (81) Eg
Selectivity >1000 fold 84 2-35 (15) 9-42 (48) 4
hERG’ plCsy < 4.5 78 17 (63) 62 (82) 30
20
BSEP pICs, < 4.5 77 32 (20) 65 (80) 12 . I
CL; < 3 mL/min/g 50 29 (43)* 46 (82)* AURK B Selectivity BSEP pIC50 hERG  Solubility ~ CLint
. pIC50 pIC50
SOIUblllty >10 uM 76 62 (79) 68 (82) m At Target m Retest Within 1Log m>1 Log No Data

ATOM a7



The ATOM Platform

Active Learning Drug Discovery Framework

(

Working
Compound
Library

.

é )
Retrain property prediction
models
. J

Efficacy

Property Prediction Pipeline

Multi-level | Systems
models models

Developability

Generative

w Molecular Design

proposes new molecules with
optimized properties

olecular Featur
Simulations

Human-relevant
assays, complex
in vitro models

Chemistry
Design &
Synthesis

Simulation

Prediction & Design

Loop
\
Design Criteria
____________ °
o
J

Active learning
decides if/when a simulation or

~N

experiment is needed to improve

or validate models

J

Experiment

AT O

M

38



Acknowledgements

Computational Tech Team Past Team Members

« Benjamin Madej (SM) .
« Kevin McLoughlin (GMD/DM)
« Amanda Paulson (SM)

 Jeff Mast (GMD) .
* Derek Jones (GMD)
* Marisa Torres (DM)

« Sergio Wong (MM)

« Dan Kirshner (MM)

 Brian Bennion (MM)

Kishore Pasikanti (SM)
Jason Deng (GMD)
Amanda Minnich (DM)
Tom Sweitzer (GMD)
Juliet McComas (GMD)
Margaret Tse (SM/DM)
Michael Gunshenan (DM)
Andrew Weber (GMD/SM)
Neha Murad (SM)

ATOM Joint

Research
Committee (JRC)

* Eric Stahlberg
* Jim Brase

* Michelle Arkin
* Dwight Nissley

« Stewart He (DM) « Stacie Calad-Thomson (JRC)
« Hiran Ranganathan (DM) * Tom Rush (JRC)
* Ya Ju Fan (DM) * Joe Polli (GMD/SM)
* S00 Kim (DM) « Sabrina Crouch (SM)
ATOM 30

SM=systems modeling DM=data modeling, GMD=generative design loop



Questions?
More information at
https://atomscience.org/
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