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Roadmap of Talk
• Problem statement and introduction to ATOM Consortium 
• Overview of ATOM computational platform
• Data and Data-Driven Modeling Pipeline
• Recent applications into systems modeling
• Applications of the small molecule generative design loop 

(GMD)
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Current drug discovery: long, costly, high failure
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Goal: transform early drug discovery to get drugs to patients faster

Target

Lengthy in-vitro 
and in-vivo 

experiments; 
Synthesis 

bottlenecks

• 33% of total cost of medicine development
• Clinical success only ~12%, indicating poor translation in patients

Source: http://www.nature.com/nrd/journal/v9/n3/pdf/nrd3078.pdf

Human clinical 
trials

Screen millions 
of functional 
molecules to 
inform design

Lead Discovery
1.5 yrs

Lead Optimization
3 yrs

Preclinical
1.5 yrs

Design, make, & test 
1000s of new 

molecules 
Sequential evaluation 

and optimization

6 years
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High-performance 
computingHigh-performance 
computing

Emerging 
experimental 
capabilities

Diverse 
biological data

High performance 
computing, data 

science, and honest 
broker

Cancer biology and 
new assay 

development

Experimental biology 
and data analytics

ATOM is an open public-private partnership for accelerating drug 
discovery

Goals
• Accelerate the drug discovery process
• Improve success rate in translation to 

patients
Approach

• Computation-driven drug design, supported and 
validated by targeted experiments

• Data-sharing to build models using everyone’s 
data

Product
• An open-source platform for active-learning 

based molecular design and optimization

Status
- Shared collaboration space at Mission Bay, SF
- 25 FTEs engaged across

the partners
- R&D started February 2018

Drug discovery, 
chemistry, and dark 

data

Example member contributions

Accelerating Therapeutics for Opportunities in Medicine (ATOM)
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ATOM provides an open platform, models, and data for a 
rapidly diversifying drug development ecosystem

University drug development 
teams
• Open tools to develop  and optimize 

molecules
• Advancing further up the development 

value chain
• Education and training in new 

approaches

Pharma and biotech
• Precompetitive design 

optimization technology
• Open R&D on emerging 

technology, methods,  and 
workflows

Neglected disease communities
• Platform and research for drug design 

projects for public good
• New partnerships to expand the open 

research community
• Broad access to data

Government programs 
advancing public health and 
biosecurity
• Open platform supporting rapid 

response programs
• Public-private partnership programs
• Support for interagency 

collaboration

ATOM
• Open platform, 

models, and data
• Public-private 

R&D community 

Computing technology 
community
• Complex problems challenging and 

extending AI and HPC capabilities
• Scalable and supported approaches



Building new predictive models
Machine learning frameworks
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The ATOM Platform
Active Learning Drug Discovery Framework
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Working 
Compound 

Library

Retrain property prediction 
models

Design Criteria

Human-relevant 
assays, complex 
in vitro models

Chemistry 
Design & 
Synthesis

Experiment

Molecular Feature
Simulations

Efficacy

Safety

PK

Developability

Multi-level 
models

Systems 
models

Property Prediction Pipeline
Prediction & Design 

Loop

Simulation

Active learning 
decides if/when a simulation or 

experiment is needed to improve 
or validate models

Generative 
Molecular Design

proposes new molecules with 
optimized properties 



The ATOM Platform
Active Learning Drug Discovery Framework
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Working 
Compound 

Library

Retrain property prediction 
models

Design Criteria

Human-relevant 
assays, complex 
in vitro models

Chemistry 
Design & 
Synthesis

Experiment

Molecular Feature
Simulations

Efficacy

Safety

PK

Developability

Multi-level 
models

Systems 
models

Property Prediction Pipeline
Prediction & Design 

Loop

Simulation

Active learning 
decides if/when a simulation or 

experiment is needed to improve 
or validate models

Generative 
Molecular Design

proposes new molecules with 
optimized properties 

• Data management and access 
environment

• AMPL pipeline – training and 
optimization for property prediction 
models

• Systems and mechanistic models

• Generative model training 
framework

• Generative molecular design loop 

• Structural models



To build these workflows ATOM is focusing on several 
technical challenges
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Challenges

Approaches

Building a foundation 
of diverse                         

open data sets

Predictive models              
for human relevant 
chemical properties

Active learning based 
molecular design

• Creating partnerships to 
build and curate public 
data repositories

• Analysis and integration of 
data from multiple sources

• Targeted generation of 
new, human-relevant data

• Leveraging rapid progress in 
AI methods to improve 
performance and transfer to 
humans

• Broadening domain of 
applicability through secure 
integration of multisource 
models

• Using mechanistic models
to effectively expand the 
datasets

• Design in a rigorous UQ 
framework

• Integrated multiparameter 
optimization of therapeutic 
window

• Optimal experimental 
design to drive active 
learning

• Automated chemical  
synthesis and assays in  
active learning loop



Browsable Directories

• Upload files to 
Datastore via GUI or 
API.

• Access control via Unix 
groups

JupyterLab

• Acts as front end for 
interactive 
development

• Also set up VNC to 
enable use of IDE for 
debugging

ChEMBL
KEGG
PDB

Relational Database

Stores model 
prediction results 

Model Zoo and Results DBMetadata for 
Data Lake

Metadata Database

Docker/Kubernetes Cluster

Supercomputer Servers

• Deploy parallelized runs 
for hyperparameter 
search

• Memory/GPU/CPU-
intensive jobs

• Molecular design loop

HPC ClustersData Lake

• Contains all input and 
output files

• GUI and REST API

Proprietary data

Public

Development 
Infrastructure



Expanding our data foundations
Curated model-ready datasets
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ATOM has built models for hundreds of pharmaceutical data sets

Pharmacokinetic Datasets

1 10 100 1,000 10,000 100,000

PPB - experimental

PPB - high throughput

Blood_to_Plasma

Hepatic Clearance

MicrosomalClearance

InVivo_Vdss

InVivo_CL

human rat dog

1 10 100 1,000 10,000 100,000
TACR1
TACR1
SLC6A4
SLC6A2
SCN5A
PTGS2
PIK3CG
PDE4B
PDE3A
OPRM1
OPRM1
NR1I2
NR1I2
MAOA
LCK

KCNH2
KCNA5
HTR3A
HTR3A
HTR2C
HTR2C
HTR2A
HTR2A
HTR1B
HTR1B
HRH1
DRD2
DRD2
DRD1

CYP3A4
CYP3A4
CYP3A4
CYP3A4
CYP3A4
CYP3A4
CYP2D6
CYP2C9
CYP2C19

CNR2
CHRNA1
CHRNA1
CHRM2
CHRM2
CHRM1
CHRM1

CACNA1C
AVPR1A

AHR
ADRB2
ADRA1B

ADORA2A
ACHE

ABCB11
[KCNE1,KCNQ1]
[GRIN1,GRIN2B]

[GABRA1,GABRB3,GABRG2]
[AURKB,INCENP]

Compound Count

Ta
rg

et

Safety Datasets

1 10 100 1000 10000 100000

LogD
pKa

Permeability_M…
Permeability_PA…

Solubility_Aqueous
Solubility_CLND
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The ATOM data strategy

1. Work with available public data sources to build baseline safety 
and PK models

2. Expand databases using commercial data sources where 
required

3. Establish and enable open data partnerships to grow public data 
sources

4. Collect targeted data sets to fill gaps and emerging needs in 
open data
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We’re working with multiple data sources
CHEMBL – Manually curated repository of bioactive molecules
• Sponsored by European Bioinformatics Institute (EMBL-EBI)
• 1.9M compounds, 11K targets

Excape-DB – Exascale Compound Activity Prediction
• EU program on predictive modeling for compound activities
• 1M compounds, 1.7K targets

Excelra GOSTAR
• Commercial database
• 7.8M compounds, 9.3K targets
• Derived data products (e.g. models) are open

Drug Target Commons – An open multi-database platform for curation with  common ontology
• Sponsored by University of Helsinki
• Largest source is CHEMBL
• 1.7M compounds, 13K targets



ATOM Modeling 
PipeLine (AMPL)
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The ATOM Modeling PipeLine (AMPL)
An open source software library for building and sharing machine 
learning models that predict bioassay activities or molecular 
properties from chemical structures

16

From chemical structure and bioassay/property data to model to prediction

IC50
EC50
LogP
fup
CLint
…

Predicted 
activities 
and 
properties 

Raw 
data

Processed 
data

Model-
ready 
data

Code Code



End-to-End Data-Driven Modeling Pipeline 
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Common infrastructure in place and ready to receive/transform new data

Data Ingestion & 
Curation

• Granular Access Control
• Python Query/Access APIs
• Data Taxonomy
• Web Interface
• Audit trail/ versioning

Splitting
• Random
• Scaffold
• Index
• Stratified
• Butina Clustering
• Asymmetric 
Validation 
Embedding 
(ATOMwise)
•Dataset balancing

Featurization
• ECFP
• MOE
• Mordred
• Graph Convolution
• 3D Features (E3FP)
•UMAP reduced features

Architecture
• Deep Neural 
Network

• Random Forest
• XGBoost
• kNN-classifier
• SVM (SVC & SVR)
• Native Bayes
• SGD Classifier

Model 
Training
• Grid Search
• Random Search
• Bayesian 
Optimization

• Genetic Optimization
• GAN Optimization

Visualization & 
Analysis

•Train/Test/Valid ROC 
AUC/R2

•k-Fold Validation
•Confusion Matrix
•PCA, tSNE, UMAP
•Uncertainty 
Quantification

Prediction 
Pipeline
• Single/Batch 
Prediction

• Model Streaming
• Model Ensembling

Benefits:
• Easy integration of diverse datasets
• Integration with scalable data and model services environment
• High-performance hyperparameter optimization
• Rapid evaluation of model architecture
• Seamless HPC integration using world-class compute systems
• Ensemble integration of models from multiple sources



Modeling uncertainty
• Random Forest

• Calculate the standard deviation of predictions from individual trees
• Neural Networks 

• Use DeepChem’s method, which combines aleatoric (sensing 
uncertainty) and epistemic (model uncertainty) values (Kendal and Gal 
2017)

• Aleatoric: Modify loss function and train model to predict both response 
variable and input variance

• Epistemic: Apply dropout masks during prediction and quantify 
variability in predictions

• Then 𝜎!"!#$ = 𝜎#$%#!"&'() + 𝜎%*'+!%,'()



Model uncertainty is critical to active learning and remains an 
open challenge
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Calibration curveUncertainty/prediction bias

Blood plasma binding (HSA)



Model derived uncertainty varies depending on the model and 
dataset
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Calibration curveUncertainty/prediction bias

Human Liver Microsomal Clearance



Model derived uncertainty varies depending on the model and 
dataset
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Microsomal clearancePlasma binding (HSA)



AMPL has been released open source

https://github.com/ATOMconsortium/AMPL
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https://pubs.acs.org/doi/full/10.1021/acs.jcim.9b01053

https://github.com/ATOMconsortium/AMPL
https://pubs.acs.org/doi/full/10.1021/acs.jcim.9b01053
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Building new predictive models
Human-level system models



Modeling frameworks support the ATOM workflow
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• Human PBPK model
• Drug-induced liver injury 

model
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A limited first case – Single ML model
Current PK modeling activities

Parent 
Molecule(s)

Plasma

Organs

Tumor

Structure to Input 
Parameters

Human PK 
Simulator (PBPK)

Time-Concentration 
Profiles

Summary PK 
Parameters

ATOM ML 
Models

• Parameters: 
solubility, 
permeability, pKa, 
B/P...

• Data curation of in 
vitro parameters 
from existing 
datasets

• in vitro experiments 
to fill data gaps

VDss
Cl
T1/2
AUC

Curated human in vivo data 
(Obach, 2008; Lombardo, 2018)



Generating world class open data for PK modelling

Started from in vivo Obach-Lombardo in-vivo data set and adding
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Valuable data sets by combining curated and newly generated data

ATOM Generated In Vitro data 
300 compounds
• Hu Liver Microsomal 

Clearance
• Hu Liver Microsomal Protein 

Binding 
• Plasma Protein Binding
• B/P Partitioning
• Log D (in progress)
Largest available set in vitro
PK data with human in vivo 
data

ATOM Generated Novel 
Human Cell Line Data

200 Compounds
• Myocyte Partitioning
• Adipocyte Partitioning

Unprecedented human-
relevant PK predictions

ATOM curated in-vitro and 
in-vivo data

• In vivo and in vitro data for 
Obach dataset (150-200 
Compounds)

• ChEMBL datasets (ML 
ready)
o Permeability
o Log D
o Log P
o Fup
o Microsomal Clearance (rat, 

dog, human)



In silico methods to predict human steady state volume of distribution
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In silico models to predict human steady state volume of 
distribution on Lombardo Obach (2018) compounds
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Type Method Description

Mechanistic ADMET mechanistic • Lukacova mechanistic model to predict tissue 
partitioning (Kp)

• ADMET Predictor models
ATOM mechanistic • Lukacova mechanistic model to predict tissue 

partitioning (Kp)
• ATOM models

Empirical Rat • Allometric scaling of predicted rat VDss

Dog • Allometric scaling of predicted dog VDss

Rat and dog • Allometric scaling of predicted rat and dog VDss

Direct ML Direct ML • Training and prediction on direct human VDss
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Mechanistic

Empirical

Direct ML

Predictions on ATOM in silico set (940)

Mechanistic

Empirical

Direct ML

Predictions on ATOM experimental set (250)
(Also compared to methods using experimental fup, RBP, adipocyte and myocyte Kp)



Generative 
molecular design
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ATOM Generative Molecular Design loop Proof-of-Concept
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Generative molecular design of AURK B inhibitors 

Starting point:
Early program data

End point: Experimental 
validation

Lead 
OptimizationPILOT 1

Why Aurora Kinase?
• Cancer relevant: >30 clinical trials are ongoing or 

completed for AURKA selective, AURKB selective, and 
AURKA/B dual inhibitors 

• Data available at ATOM: Potency data on ~24k 
compound available for AURK B and/or AURK A

• Pharmaceutical discovery relevant problem: 
Selectivity between kinases is an important and common 
pharmaceutical discovery problem

Structure overlay of 
AURK A and AURK B



Design Criteria
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Encoder

Initial Compound 
Library 

(3k compounds)

Working 
Compound 

Library

Molecular Optimizer

Decoder

Property Prediction Pipeline

Efficacy

Safety

PK

Developability Design 
Criteria

Candidate Quality Panel
Efficacy
AURK B (pIC50 > 9)
AURK B/A Selectivity > 1000

Safety
BSEP (pIC50 < 4)
hERG (pIC50 < 4)

PK
Solubility (>10mµM)
CLint (<3 mL/min/g)

Developability 
Solubility (>10µM)
SAS: Synthetic Accessibility Score
QED: Quantitative Estimation of Drug likeness

Proof-of-Concept 
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Our initial molecular design loop is based on multi-parameter 
optimization in a learned latent space

Junction Tree Variational
Autoencoder (JT-VAE)
(Jaakkola, et al – published code)

• Molecular modification in physical space lead to a very 
discontinuous cost surface

• Learned generative models  provide a continuous latent space in 
which small design changes lead to small changes in properties 

• Our initial implementations are based on junction tree 
autoencoders

• Trained on ~24K molecular structures associated with AURK A or 
B

• For expanding design into new chemical spaces we need to 
expand the training set to ~1B molecular structures

• Not possible with current learning frameworks and systems – a 
target for DOE ML learning systems: LBANN and CANDLE



AMQP (Rabbit MQ) Exchange Brokered HPC Environment

High Performance Compute Facilitates Large Scale Search
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Enables Scalable Management of Heterogeneous Compute Tasks 

Molecular 
Featurizers

Predictive ML 
Models

Optimization

Aggregation

Compound 
ScoringCompound 

ScoringCompound 
ScoringBatching

Molecule 
GenerationMolecule 

Generation
De Novo 
Molecule 

Generation

Batching

Setup and 
Configuration

Node Allocation 
and Service 

Start-up

Initial Library 
Preparation

• Facilitated ideation and evaluation of >3 million compounds in 24 hour run time
• Future scaling by 10x or more achievable on current, 100 node clusters
• Flexible, object-oriented worker framework allows for future addition of systems and physics-based modelling

CPU-bound

CPU-bound, distributed

GPU-bound, distributed

Code going through open source process now, requires (for now) SLURM job schedular 



~200 Compounds with high potency, selectivity, and 
other favorable properties
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criteria met Close to criteria criteria not met

A pIC150

B
 p
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AURK B vs. AURK A  pIC50

3 4 5 6 7 8 9 10 11
3

4

5

6

7

8

9

10

11

All AURK (measured)
First 6 months (measured)
Best 250 Designed (predicted)
AURK in Clinical Trials
Unity
100 Fold Selectivity

Legend:

Proof-of-Concept 

Generated 
Compound

AURK B 
pIC50

AURK B/A 
Selectivity 

(fold)
hERG pIC50 BSEP 

pIC50*

hLM
Clearance
mL/min/g

Solubility
ug/mL SAS

Cmpd 1 9.2 5287 3.3 4.3 3.6 1096 2.5
Cmpd 2 9.3 3233 3.2 4.2 2.5 399 2.4
Cmpd 3 9.6 11512 3.6 4.4 2.2 412 2.6
Cmpd 4 9.6 2449 3.2 4.3 2.5 60 2.3
Cmpd 5 9.7 3068 3.3 4.3 2.0 1155 2.5
Cmpd 6 9.6 5756 3.7 4.5 4.3 232 2.3
Cmpd 7 9.3 3296 3.3 4.4 2.6 33 2.4
Cmpd 8 9.1 1197 3.3 4.2 2.4 268 2.5
Cmpd 9 9.2 7724 3.3 4.3 2.3 733 2.7

Cmpd 10 10.1 2270 3.2 4.5 2.6 139 2.4
Cmpd 11 9.8 9948 3.2 4.8 5.0 93 2.4
Cmpd 12 9.7 3555 3.4 4.2 3.6 739 3.1
Cmpd 13 9.2 12116 4.1 4.1 2.1 1741 2.7
Cmpd 14 9.0 1951 3.2 4.2 5.0 343 2.5
Cmpd 15 9.3 3573 3.4 4.4 5.7 1248 2.7
Cmpd 16 9.2 5334 3.9 4.5 4.9 155 2.5
Cmpd 17 9.5 2277 3.2 4.8 5.3 78 2.2
Cmpd 18 9.2 5439 3.3 4.5 2.2 74 2.6
Cmpd 19 9.9 2372 3.2 4.7 4.4 689 2.5
Cmpd 20 9.3 8071 3.4 4.6 3.8 1332 2.8

Other predicted properties for top compounds:



Make Test Results – On Target Pharmacology

Count AURK B Potency 
Very High            High    

(pIC50 > 9)        (pIC50 > 8)

AURK B/A Selectivity
Highly Selective    Selective  
(> 1000 fold)        (> 100fold)

Initial Library 3114 18 
(0.6%)

75 
(2.4%)

0 
(0%)

8 
(0.3%)

Full ATOM 
AURK Library

18,582 69 
(0.3%)

316 
(1.7%)

7 
(0.03%)

34 
(0.2%)

Generated 
Compounds

84 16-43 
(19-51%)

58 
(69%)

2-35 
(2-42%)

9-42 
(10-50%)
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Significant Enrichment of High Quality Compounds!

y = 1.09x - 0.34
R² = 0.80

y = 1.09x - 0.18
R² = 0.75
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Predicted AURKB pIC50

ECFP
Mordred
Make-Test ECFP
Make-Test Mordred

Rediscovery of Compounds in “Hold Out” 
Library Further Confirms Accuracy of 
Models for Generated Compounds

De Novo Synthesis & Testing Confirms Enrichment 
of High Potency Compounds

42 de novo compounds successfully synthesized and tested
42 library available highly scored compounds sourced and tested



Achievement of Secondary Pharmacology In Alignment with 
Predictions

• Generally >70% of compounds tested are as good or better than the 
models predicted

• Selectivity and hERG are more difficult
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Criteria Target Total 
Tested

In Target 
Range 

(Predicted)

Within 1 log 
of target

AURK B pIC50 > 9 84 16-43 (37) 58 (81)
Selectivity >1000 fold 84 2-35 (15) 9-42 (48)
hERG* pIC50 < 4.5 78 17 (63) 62 (82)

BSEP pIC50 < 4.5 77 32 (20) 65 (80)
CLint < 3 mL/min/g 50 29 (43)* 46 (82)*
Solubility >10 uM 76 62 (79) 68 (82)

0

10

20

30

40

50

60

70

80

90

AURK B
pIC50

Selectivity BSEP pIC50 hERG
pIC50

Solubility CLint

Compounds At Target

At Target Retest Within 1 Log >1 Log No Data



The ATOM Platform
Active Learning Drug Discovery Framework
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Working 
Compound 

Library

Retrain property prediction 
models

Design Criteria

Human-relevant 
assays, complex 
in vitro models

Chemistry 
Design & 
Synthesis

Experiment

Molecular Feature
Simulations

Efficacy

Safety

PK

Developability

Multi-level 
models

Systems 
models

Property Prediction Pipeline
Prediction & Design 

Loop

Simulation

Active learning 
decides if/when a simulation or 

experiment is needed to improve 
or validate models

Generative 
Molecular Design

proposes new molecules with 
optimized properties 
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Questions?
More information at
https://atomscience.org/

40


