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Many Diseases Have Been Prevented

3

Halsey, NA, How Vaccines Cause Adverse Events, 
ADVAC Course Annecy France 2018

https://www.forbes.com/sites/matthewherper/2013
/02/19/a-graphic-that-drives-home-how-vaccines-
have-changed-our-world/ - 1a58e6dd3302

Age < 5
Age ≥ 5



Polio
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Historical Perspective: Smallpox
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Bazin, H., Vaccination: a History



Don’t Count Your Children Until The Measles Have Come Through
– African saying
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20.3 Million*

*MMWR / November 11, 2016, 65 (44) 1228-1233



The Modern Toll of Measles

EU region
2018

83,000 cases
50,000 hospitalized

72 deaths1

Philippines
1Q 2019

33,000 cases
> 450 deaths3
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1 European Region statistics. From “Measles in Europe: record number of both sick and immunized,” WHO Regional Office for Europe, Copenhagen, 7 February 2019
2 http://www.euro.who.int/en/media-centre/sections/press-releases/2019/over-100-000-people-sick-with-measles-in-14-months-with-measles-cases-at-an-alarming-level-in-the-european-
region,-who-scales-up-response
3 https://www.npr.org/2019/05/19/724747890/measles-outbreak-in-the-philippines

EU region
1Jan18 – 8May19

100,000 cases
>90 deaths2



Health and Economic Impact of Preventing Disease with Vaccination…

Just One Country: USA
Just One Year’s Cohort: Children born in 2001
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Adapted from: Zhou F et al. Arch Pediatr Adolesc Med. 2005;159:1136–1144. 

All costs are given in US dollars (USD).
Direct program costs included vaccines, administration, parent travel, and direct costs for the management of adverse events. Societal costs included direct 
program costs and parent time lost for vaccination and the management of adverse events. 

>13 Million Cases Prevented > $53 Billion Saved



About 50 Vaccines Developed to Date

9

Adapted from: IOM (Institute of Medicine), Ranking vaccines: A prioritization framework: Phase I: 
Demonstration of concept and a software blueprint. Washington, DC, The National Academies Press, 2012, p. 19.

Number of Vaccines Developed:
~30 as of 1990, ~50 as of 2010
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…But Expensive and Takes Too Long

• Cost of a vaccine from discovery through Ph. 2a: 
$0.4 Billion (range $0.1-1B)*

• Time for a vaccine from discovery through Ph. 2a: 
7 years (range 4-15 years)*

• Vaccines too often in development for ~20 years
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Pharmacometrics

*Gouglas, D., TT Le, et al., Estimating the cost of vaccine development against epidemic 
infectious diseases: a cost minimisation study, Lancet Glob. Health, 2018;6:e1386–96

(Typically)
• In Phase 3, 18,000 subjects 

total, 3 years (range 1-5)

• Time: enrollment + 
low incidence rate



“Vaccine”
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Vaccine (for today): Active Stimulator Of Immune Memory and Antibody Production 
for Prevention of an Infectious Disease.
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Therapeutic

Chemo-
Prophylaxis

Passive
Immunization

Seasonal 
Flu

Jeryl Lynn Hilleman with her sister, Kirsten, in 1966 getting the mumps vaccine developed by their father.



What is Special About Vaccines and Pharmacometrics?

Why were Vaccines not on our radar??
• PK* Rare
• Little DDI* (concomitant vaccination)
• Traditional clinical pharmacology analyses not typical 

• except safety & Tox
 not part of our traditional purview.

13*PK: pharmacokinetics, DDI: drug-drug interaction



The BASICS:
VACCINES and IMMUNOLOGY
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Active Immunization – How it works

• Measuring Immune response: “Titer” ~ Target engagement
o Quantity and quality of antibodies

• More is better

15

Immunogenicity ≠ efficacy

Immune 
Memory

Recognize 
pathogen

Ramp up 
defenses quickly

Reduce symptoms
or prevent disease



Overview of PMX and Vax
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Vaccine 
Pharmacometrics

Modeling and Simulation in Vaccines
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Computational vaccinology: 

Epidemiology
Health Econ

chem eng. & 
SYS BIO for 
bioprocess

PKPD
of mAb

(“passive 
immu-

nization”)

QSP/PKPD in 
Chemo-

prophylaxis

immuno-
genicity

= F(antigen
sequence)

Vaccine 
Pharmacometrics

(Today’s focus)



Rich History of Published Work (not a complete list!)
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Barbarossa, et al. (2015). Mathematical models for 
vaccination, waning immunity and immune system boosting: 
a general framework. arXiv:1501.03451.

Atcheson E, et al. (2019) A probabilistic model 
of pre-erythrocytic malaria vaccine combination 
in mice. PLoS One. 14(1):e0209028.

Modelling dose responses 
following vaccination: lessons 
from the PK/PD field 
Rockville, Maryland, May 29,  2014
Organizers: 

BMGF: Steve Kern 
LSHTM: Richard White, Sophie Rhodes 
Imperial College: Gwen Knight 
AERAS: Tom Evans, Lewis Schrager

Modelling dose responses 
following vaccination: lessons 
from the PK/PD field 
Rockville, Maryland, May 29,  2014
Organizers: 

BMGF: Steve Kern 
LSHTM: Richard White, Sophie Rhodes 
Imperial College: Gwen Knight 
AERAS: Tom Evans, Lewis Schrager

www.lshtm.ac.uk/research/centres-
projects-groups/isid#welcome



EXAMPLES 

19



Key question, Method, Decision / Impact
Phase Key Question Method(s) Decision(s) / Impact
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Enabling 
Translation

Understanding 
TE* Biomarkers 
Using Past 
Data

Leveraging TE* 
Biomarkers for 
Trial Design

Making Earlier  
Decisions with 
Quantified Risk

Supporting 
Regulatory 
Interaction

*TE: Target Engagement (stimulating protective immune response)

Seven Examples

Capability Demonstration
Program Impact



Key question, Method, Decision / Impact
Phase Key Question Method(s) Decision(s) / Impact

1/2
What N (# subjects) 

will let us tell if vaccines A and B are 
different?

Phenomenological model 
Clinical trial simulation

Trial design, program strategy for sequence 
of trials

21

Wrong Question!



What can we learn about dose-level & formulation impact on immunogenicity?
How can we use past data to inform the trial design?
How can we integrate data across trials in the future?
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How many arms (and which ones) were needed to 
address information desired in the first question?

Number of arms the team had planned:



Trial Design by Phenomenological Simulation
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Trial Design by Phenomenological Simulation
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Impact:  
• changed from 2-arm “yes-no” study to 5-arms (same 

total # subjects), optimized to learn key properties 
• Helped plan:

(1) next studies, and
(2) how to integrate data across studies



Key question, Method, Decision / Impact
Phase Key Question Method(s) Decision(s) / Impact

2 What disease assay(s) should we 
use and how often?

QSP and 
Bayesian probabilistic

Saved $, increased POS
Choice of assay, frequency

25

• Measuring vaccine efficacy requires counting 
number of disease cases.

• What happens if the counting (assay) process 
is not perfect?

• What assays should we use and how often?



Placebo Vaccinated

Efficacy = Proportional Risk Reduction
10% of placebo subjects get sick,
3% vaccinated subjects get sick

Efficacy = (10% - 3%) / 10% = 0.7 = “70% efficacy”

26



Placebo Vaccinated

Efficacy = Proportional Risk Reduction
10% of placebo subjects get sick,
3% vaccinated subjects get sick

Efficacy = (10% - 3%) / 10% = 0.7 = “70% efficacy”

27

Typically need tens/hundred cases (Ph. 2/3, resp.)
 No efficacy information until Ph. 2b/3



10% of placebo subjects get sick,
3% vaccinated subjects get sick

Efficacy = (10% - 3%)/10% = 0.7   = “70% efficacy”
Efficacy = (13% - 6%)/13% = 0.54 = “54% efficacy”

Efficacy = Proportional Risk Reduction
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Placebo Vaccinated

Daniel Rosenbloom, Nitin Mehrotra

Impact of False 
Positives

+3%
+3%

Repeat testing 
Smart testing 

Ph. 2/3 Design
More assays: 

Trade Time for power
Duration of 

detectability matters

+ Pathogen 
Dynamics
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10% of placebo subjects get sick,
3% vaccinated subjects get sick

Efficacy = (10% - 3%)/10% = 0.7   = “70% efficacy”
Efficacy = (13% - 6%)/13% = 0.54 = “54% efficacy”

Efficacy = Proportional Risk Reduction
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Placebo Vaccinated

Daniel Rosenbloom, Nitin Mehrotra

Impact of False 
Positives

+3%
+3%

Repeat testing 
Smart testing 

Ph. 2/3 Design
More assays: 

Trade Time for power
Duration of 
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Impact:
• Saved $, 
• increased POS (per subject)
• Choice of assay(s) and their frequency



Key question, Method, Decision / Impact
Phase Key Question Method(s) Decision(s) / Impact

(na) Can we model enough of the 
immune system to be predictive? QSP Capability development 

30

How can we use preclinical 
data to help design vaccines 
and to predict the right dose-
level or regimen?



Basic Model of Some Immune System Components

31

Chen et al., CPT PSP 2014
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Thanks: Jeff Perley, Josiah Ryman
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Basic Model of Some Immune System Components
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Chen et al., CPT PSP 2014
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300Impact: Capability Development



Key question, Method, Decision / Impact
Phase Key Question Method(s) Decision(s) / Impact

4
How many doses of vaccine are 

needed to confer lasting 
protection?

QSP
Suggests single dose could provide 

protective immune memory
Mechanistic insight
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Can we leverage mechanistic 
information to help inform 

regimen?



Hepatitis B: Models for Antigen, Anti-viral Titer and Immune Memory
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Antigen

Immune memory

Anti-viral titer

• 10,815 anti-viral titres in 1,923 patients
• 2-4 vaccinations in 6-48 month period
• No Immune memory (Mi) or antigen (Vi) measurements

Wilson JN, Nokes DJ, Medley GF, Shouval D. Mathematical model of the antibody response to hepatitis B vaccines: 
implications for reduced schedules. Vaccine. 25(18):3705-12. 2007
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• The model demonstrates significant differences between different vaccines in both 
the time taken to generate immune memory and the amount of memory generated.

• The model provides theoretical support for the hypothesis that a single vaccine dose can 
generate protective immune memory.

Authors’ 
Conclusions

Simulation 
Results
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Wilson JN, Nokes DJ, Medley GF, Shouval D. Mathematical model of the antibody response to hepatitis B vaccines: 
implications for reduced schedules. Vaccine. 25(18):3705-12. 2007
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• The model demonstrates significant differences between different vaccines in both 
the time taken to generate immune memory and the amount of memory generated.

• The model provides theoretical support for the hypothesis that a single vaccine dose can 
generate protective immune memory.

Authors’ 
Conclusions

Simulation 
Results
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Wilson JN, Nokes DJ, Medley GF, Shouval D. Mathematical model of the antibody response to hepatitis B vaccines: 
implications for reduced schedules. Vaccine. 25(18):3705-12. 2007

Impact:
• Suggests single dose might be 

enough (for immune memory for 
this pathogen and vaccine 
mechanism)

• Mechanistic insight



Key question, Method, Decision / Impact
Phase Key Question Method(s) Decision(s) / Impact

2
Which regimens should be tested

in Ph. 2 Trial?
(Regimen: dose‐level, # doses, timing)

QSP Ph. 2 Trial Design: add new dose 
level and different regimen

37

Can we leverage mechanistic 
information to help inform 

regimen in Ph. 2 trial?



NHP Data

Trial Design by QSP
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• Predicted response to different dose-
levels, regimens, formulations

• Predictions qualified with Ph1 data 

• Changed Ph. 2 design to incorporate a 
lower dose-level, additional regimen

Thanks: Jeff Perley, Guido Jajamovich, Jos Lommerse (Certara), April Barbour

Literature Data
(mostly non-clinical)

Clinical Data Overlaid on Translated Prediction
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NHP Data

Trial Design by QSP
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• Predicted response to different dose-
levels, regimens, formulations

• Predictions qualified with Ph1 data 

• Changed Ph. 2 design to incorporate a 
lower dose-level, additional regimen

Thanks: Jeff Perley, Guido Jajamovich, Jos Lommerse (Certara), April Barbour

Literature Data
(mostly non-clinical)

Clinical Data Overlaid on Translated Prediction
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Impact:
• Increased confidence in ability to 

• model regimen-response
• Translate from non-clinical species

• Changed planned Phase 2 
• dose-levels 
• number of doses



Key question, Method, Decision / Impact
Phase Key Question Method(s) Decision(s) / Impact

2,3
Do we have adequate evidence of 
efficacy if some pathogens have too 

few cases?

PoDBA 
( = Probability of Disease

Bayesian Analysis)

Novel Ph. 3 endpoint
GNG test criteria

40

Can we increase POS by 
mitigating risk of a season with 

low incidence rate?



PoDBA Method

• Estimate relationship between probability of 
disease and antibody titer values based on titer 
values of subjects with and without disease

41
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Method: Estimating the “Probability of Disease” Curve

• Use titer values measured in infected and non-infected subjects
• Assume that the relationship between titer values and probability of disease follows a sigmoidal curve
• Estimate the parameters of the curve and their confidence intervals using standard statistical method (Maximum likelihood)
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Qualified PoDBA method & Efficacy CI 
(demonstrated predictive power) with 
published data and simulation 



PoDBA  Novel Endpoint (example from a program plan, not agency guidance on different approaches to basis of licensure)

43

case-count 
alone

+PoDBA

YesYesTrial P001

No

No

No correlate

(With correlate)

TBD

TBD

Yes

Impact:
• Increased capability to develop “Correlate 

of Protection”
• Developed potential Correlate of Protection
• Increased Power of planned trials 

increased POS for same # subjects
• Method for early decision and 

understanding of covariates



Key question, Method, Decision / Impact
Phase Key Question Method(s) Decision(s) / Impact

2
Is our immunogenicity likely to 

provide the necessary protection, and 
at what dose‐level?

NLME+ MBMA + PoDBA
(Comparator modeling + 

PoDBA)
No‐go, GO, Dose‐selection

44

Can we leverage literature data 
and early immunogenicity data 
to drive early, objective, risk-

based decisions?
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Modeling Overview for Supporting Both Go and No-Go Decisions

1.Titer Incidence Rate (“IR”)
• Published clinical data
• Incidence rate for different disease levels
• Data cover various populations

Dose-level  Titer  Incidence Rate
Predicted change in incidence rate  efficacy
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3.Combine 1 & 2  “integrated” modeling:

2.Dose-level  Titer
• Relate dose-level to serum neutralization titer response
• FIH Data
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Visualization Has to Tie Together Data for Different Disease Levels and Populations
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Visualization Has to Tie Together Data for Different Disease Levels and Populations
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Visualization Has to Tie Together Data for Different Disease Levels and Populations
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Impact:
Objective, Quantitative…

No-Go:  $40M trial
Go:  $10M trial

Dose-level, Biological insight, …



Key question, Method, Decision / Impact
Phase Key Question Method(s) Decision(s) / Impact

2
What N (# subjects) 

will let us tell if vaccines A and B are 
different?

Phenomenological model 
Clinical trial simulation

Trial design, program strategy for sequence of 
trials

2 What immunogenicity assay(s) should 
we use and how often?

QSP and 
Bayesian probabilistic

Saved $, increased POS
Choice of assay, frequency

(na) Can we model enough of the immune 
system to be predictive? QSP Capability development 

4 How many doses of vaccine are needed 
to confer lasting protection? QSP Suggests 1 less dose

Mechanistic insight

2
Which regimens should be tested

in Ph. 2 Trial?
(Regimen: dose‐level, # doses, timing)

QSP Ph. 2 Trial Design: add new dose 
level and different regimen

2,3 Do we have adequate evidence of 
efficacy if some pathogens have too few 

cases?

PoDBA 
( = Probability of Disease

Bayesian Analysis)

Novel Ph. 3 endpoint
GNG test criteria

2
Is our immunogenicity likely to provide 
the necessary protection, and at what 

dose‐level?

NLME+ MBMA + PoDBA
(Comparator modeling + 

PoDBA)
No‐go, GO, Dose‐selection
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Vaccine Pharmacometrics

Today
• Simulation-based trial design to add/save 

trial arms or subjects
• QSP modeling of the immune system as a platform
• Using dose, regimen, formulation to predict 

immunogenicity/efficacy
• Translation between preclinical and 

clinical immunogenicity
• Leveraging literature data
• Establishing new trial endpoints
• Understanding covariate (age, genetics, geography,…) 

effects on immunogenicity & efficacy  

Don’t forget also…
• Predicting most effective vaccine platform by 

mechanistic modeling
• Understanding or predicting safety/toxicity
• Predicting the best route of administration
• Leveraging results of real-world trials
• Prioritizing vaccine candidates
• Prioritizing pathogen candidates
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CONCLUSION 
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52
Source: https://www.ag.ndsu.edu/news/columns/beeftalk/beeftalk-an-ounce-of-prevention-is-worth-a-pound-of-cure/.
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NSAID Anti-
viral

Anti-
biotic
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• Vaccines are a key component of public health• Vaccines are a key component of public health
• Pharmacometrics useful for vaccine discovery & development

‐ QSP, PK/PD, Bayesian, comparator, translational,…
• These (and other) methods have impacted decisions
• Pharmacometrics (we) can impact human health by helping 

inform vaccine discovery & development
‐ Assumptions, study design & strategy, data interpretation
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Backup

PROPRIETARY ICONS HERE 56



Attributes of Vaccine Development

1. Stringent safety
2. Trial size and duration (event frequency)
3. Efficacy = proportional risk reduction
4. Surrogate marker (“Correlate of Protection,” a.k.a. “CoP”) challenges
5. Lack of translational models
6. Need arm with placebo or active comparator
7. Complex biologics, need to be transportable stable, usable
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CoP Challenges: Knowledge, Time, Resources, Variability…
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Knowledge
• Which measurements?
• Which species?
• Predictive power?

Resources
• Many samples
• Often multiple species
• Resource-intensive 

assays

Time
• Knowledge early enough
• Timely availability of 

clinical data

Variability
• Assays often +/- 2-fold
• Large BSV in response
• Variability in CoP predictive 

power? BSV: between-subject 
variability


