
1© 2019 The MathWorks, Inc.

A general workflow for parameter estimation to help 

establish confidence in model predictions

Sietse Braakman, PhD

Computational Biology

MathWorks



2

Topics that aren’t explicitly covered

▪ Non-linear mixed effects estimation

▪ Virtual population approaches
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Case study: calibrate PCSK9 model to alternate data

Model

Data from 

healthy 

subjects

Scenario: 

• I’m a modeler at a pharmaceutical 

company

• My company is developing a new 

therapy for hyperlipidemia and 

associated cardiac disease

• I am tasked to do a feasibility study 

using modeling

• First aim is to determine whether our 

therapy can match anti-PCSK9 efficacy

Recalibrate model and compare predictions 

from both compounds for efficacy
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Agenda: Parameter Estimation

▪ Central concepts

– Objective function

– Optimization 

▪ Mechanics of parameter estimation

– Setting up an optimization

– Pitfalls

▪ Workflow to guide estimation process

– Sensitivity analysis

– Identifiability analysis

– Confidence intervals
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1. Start with a set of data points
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2. Define an appropriate model
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Example of a simple objective function:

O a,b = ෍

i=1

n

yi−y xi
2

Alternative names: cost or loss function

3. Introduce an objective function
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4. Minimize value of objective function to obtain estimates

Find a,b for which the 

value of O(a,b) is minimal

O a,b = ෍

i=1

n

yi−y xi
2
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What does an objective function look like?
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Using the log likelihood function

LL = -log(objective function)

Taking the logarithm makes calculations easier

The coordinates of a,b at the maximum of the log likelihood function represent the optimal parameter values
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Finding the maximum value of loglikelihood

▪ Take the maximum value of the 

surface

– Calculate entire ‘surface’

– Computationally expensive

▪ Use an optimization algorithm

– E.g. following a gradient

– Calculate only along optimization 

path
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Applying these concepts to ODE models

?

Algebraic equation ODE
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Applying these concepts to ODE models

1. Solve the set of ODEs as a function of

– Parameter values – ka, ke

– Initial conditions – y1(0), y2(0)

– Dose schedules

2. Calculate the objective function

– Decide on appropriate objective function

▪ Which observations/data to include

▪ How the data maps to the model

– Take into account the residual error model 

▪ Constant, proportional, combined, exponential
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Agenda: Parameter Estimation

▪ Central concepts

– Objective function

– Optimization 

▪ Mechanics of parameter estimation

– Setting up an optimization

– Pitfalls

▪ Workflow to guide estimation process

– Sensitivity analysis

– Identifiability analysis

– Confidence intervals
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Compare data with simulation, not a fit

ID Time Evo PCSK9 LDLc Dose

1 0 140

1 1 3 -90 -10

1 3 15 -95 -30

…

2 0 140

simulation
data
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Pitfall 1

Mapping of dose or response column to model

▪ Adding a dose or response to the 

wrong state (ODE) in the model

▪ Symptom:

▪ Solution: 

– Determine what the protocol for the 

experimental data was

– For dose: use the right route of 

administration/type of dosing

– For response mismatches:

▪ Determine the equivalent state in your 

model to your data column

▪ Or create an equivalent state in your 

model

▪ Map the data column to the correct state 

in your model

Shape mismatch
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Pitfall 2

Units

▪ Inconsistent units between 

dataset and model

▪ Symptom:

Solution:

▪ Use unit conversion (SimBiology)

▪ Convert your units manually, 

either in your model or dataset

Order-of-magnitude mismatch
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Pitfall 3

Data incompatible with error model

Link to error models

With geometric mean:

If one observation is zero, 𝑓𝑔𝑚 = 0

Proportional error model:

Results in divide by zero, leading to

NaN (not a number) 

https://www.mathworks.com/help/simbio/ref/sbiofit.html#bual8qm
https://www.mathworks.com/help/simbio/ref/sbiofit.html#bual8qm
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Pitfall 4

Objective function not well-posed for parameters being estimated

▪ Example: Objective function takes into account three response types (anti-

PCSK9, PCSK9 and LDLc) but only PK parameters are estimated

– Because PK parameters are primarily associated with anti-PCSK9 response, the model 

does not have degrees of freedom to get a good fit with all three responses

– The PCSK9 and LDLc responses penalize the fit unnecessarily

▪ Solution: “it depends” remove PCSK9 and LDLc responses or add weights

All three responses Only anti-PCSK9 response
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Pitfall 5:

Ambiguity in observations at time of dose
ID Time Dose_IV Conc_central

1 0 10 0

1 2 3.1

1 5 1.3

1 10 0.4

2 0 100 0

Was the concentration in the central compartment 0 before the dosing or after the dosing happened?

ID Time Dose_IV Conc_central

1 0 0

1 0.1 10

1 2 3.1

1 5 1.3

1 10 0.4
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Progress plot

Maximize Log Likelihood

Minimize gradient at solution: the 

derivative should be 0 at a maximum

Ensure the optimization doesn’t run 

into upper or lower bounds

Aim for the optimization to terminate 

on log likelihood, first order optimality 

and/or parameter values, rather than 

maximum number of iteration. 

Max iterations is no guarantee the 

optimization found a maximum!
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Fit plot

▪ Did the final fit 

represent the data 

well?

▪ What can we do 

beyond eye-balling?
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Observation vs prediction plot

▪ Blue line is the unity line (y = x)

▪ For perfect predictions, all 

observations would coincide with 

the unity line

▪ In other words: there is no 

residual
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Residuals vs time

▪ The observations should be 

equally distributed on either side 

of x-axis

▪ Throughout the simulation
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Residual distribution

▪ Quantile-Quantile plot

▪ Compare residual distribution with 

normal distribution

▪ If the points lie mostly along the 

line, you can assume the 

residuals are approximately 

normally distributed
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Agenda: Parameter Estimation

▪ Central concepts

– Objective function

– Optimization 

▪ Mechanics of parameter estimation

– Setting up an optimization

– Pitfalls

▪ Workflow to guide estimation process

– Sensitivity analysis

– Identifiability analysis

– Confidence intervals
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Hold-out 

evaluation

Uncertainty 

Quantification

Prediction 

CIs

Final model

Hold-out 

evaluation

A priori plans: model aims, scope, holdout data

Hold-out

data

Model 

Selection

Virtual Population

approaches 

overlap here

Identifiability Analysis

Influential & Identifiable parameters

Global Sensitivity Analysis

Influential parameters

Initial model

Model Calibration 

Fit criteria (AIC, BIC, …)

Data

Global Sensitivity Analysis

Identifiability Analysis

Hold-out 

evaluation

General workflow for parameter estimation

Uncertainty 

Quantification
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Identifiability Analysis

Influential & Identifiable parameters

Global Sensitivity Analysis

Influential parameters

Initial model

Sensitivity Analysis
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Concepts in Sensitivity Analysis

▪ Local or Global 

– Local: Analysis at a single point in parameter space; assumes correct calibration

– Global: Analysis across a user-specified domain in parameter space

▪ Sampling

– One-at-a-time: change one parameter at a time to calculate sensitivity index

▪ Unable to observe interactions between parameters from single analysis

– All-at-a-time: take random samples from parameter space to calculate sensitivity index

▪ Observe interactions between parameters

▪ Multiple methods to sample parameter space – Sobol, Latin hypercube, uniform

▪ Derivative, variance, or correlation based
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Why use Global Sensitivity Analysis?

Example: 1-compartment model, oral dosing, enzymatic clearance

Local Sensitivity Analysis 1 Local Sensitivity Analysis 2

Which analysis will you base your modeling 

decisions on?
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Why use Global Sensitivity Analysis?

Example: 1-compartment model, oral dosing, enzymatic clearance

Local Sensitivity Analysis 1

Use GSA: fewer assumptions, explores full input parameter domain

Global Sensitivity Analysis (Sobol)
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Method Assumptions/Limitations Approximate 

computational 

expense

Morris/Elementary 

Effect/ Weighted 

Average of Local 

Sensitivities Methods

Monotonicity, linearity, one-at-a-time >M*10

M: number of 

parameters under 

investigation

Partial Rank Correlation 

Coefficient (PRCC)

Monotonicity in parameters, limited correlation 

between parameters, robust for nonlinear models

>M*100

Variance-based: Sobol

indices, (extended) 

Fourier Amplitude 

Sensitivity Test

Very few. Variance is a good statistic to represent 

model output distribution; not appropriate when 

output distribution is highly skewed or multimodal

>M*1000 

Global Sensitivity Analysis methods

Pianosi et al. (2016) Env Modelling and Software

Zhang et al. (2015) CPT:PSP

Tiemann et al. (2013) PLOS Comp Bio

Zi (2011) IET Sys Bio

Marino et al. 2008) Journal of Theoretical Biology

https://doi.org/10.1016/j.envsoft.2016.02.008
https://doi.org/10.1002/psp4.6
https://doi.org/10.1371/journal.pcbi.1003166
https://pdfs.semanticscholar.org/7f79/4b241e215f864c03ee1d07acb38c0bef693c.pdf
https://doi.org/10.1016/j.jtbi.2008.04.011
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Rank-ordered sensitivities from Elementary Effects Method for LDLc
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Rank-ordered sensitivities from Elementary Effects Method for PCSK9
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Rank-ordered sensitivities from Elementary Effects Method for anti-

PCSK9
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Sobol indices

▪ Apportion variance in model output (Y) 

to model inputs (X)

▪ First-order sensitivity index: individual 

contributions

𝑆𝑖 = 1 −
𝐸𝑋𝑖 𝑉𝑎𝑟𝑋~𝑖 𝑌 𝑋𝑖

𝑉𝑎𝑟(𝑌)

▪ Total effect: shows interactions

Saltelli et al. (2008) Global Sensitivity Analysis – The Primer, Wiley 

Total variance

𝑆𝑇,1 = 𝑆1 + 𝑆12⋯𝑆1,2,⋯,𝑛 = 1 −
𝑉𝑎𝑟𝑋~1 𝐸𝑋1 𝑌 𝑋~1

𝑉𝑎𝑟 𝑌
=

𝐸𝑋~1 𝑉𝑎𝑟𝑋1 𝑌 𝑋~1
𝑉𝑎𝑟 𝑌

Variance not due to Xi

http://www.andreasaltelli.eu/file/repository/A_Saltelli_Marco_Ratto_Terry_Andres_Francesca_Campolongo_Jessica_Cariboni_Debora_Gatelli_Michaela_Saisana_Stefano_Tarantola_Global_Sensitivity_Analysis_The_Primer_Wiley_Interscience_2008_.pdf
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Identifiability Analysis

Influential & Identifiable parameters

Global Sensitivity Analysis

Influential parameters

Identifiability Analysis
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Concepts in Identifiability

▪ Types

– Structural identifiability, e.g., F∙ka or parallel pathways

– Practical identifiability, e.g., inadequate data to constrain

– Note: identifiability is NOT “my runs converged”

▪ Structural identifiability computations

– GenSSI: Generating Series for Structural Identifiability 

– COMBOS: identifiable parameter combinations using Groebner bases

– DAISY: Differential Algebra for Identifiability of Systems 

▪ Practical identifiability computations

– Mostly sampling-based (e.g., profile likelihood, MCMC)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167050/pdf/btr431.pdf
http://biocyb1.cs.ucla.edu/combos/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2888537/pdf/nihms-30415.pdf
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Aliasing score (1)

1. Start with local sensitivities:

𝜎𝑖,𝑘 𝑡 =
𝜕𝑅𝑖(𝑡)

𝜕𝑝𝑖
, where  𝑝𝑖 is the ith parameter 

and 𝑅𝑘 is the kth response in the model

𝜎𝑖,𝑘 𝑡

▪ Definition:

Time [hour]



40

Aliasing score (2)

1. Start with local sensitivities:

𝜎𝑖,𝑘 𝑡 =
𝜕𝑅𝑖(𝑡)

𝜕𝑝𝑖
, where  𝑝𝑖 is the ith parameter 

and 𝑅𝑘 is the kth response in the model

2. Calculate the maximum value of 𝜎𝑖,𝑘(𝑡)

𝑆𝑖,𝑘 ≔max
𝑡∈𝑇

𝜎𝑖,𝑘(𝑡)

𝜎𝑖,𝑘(𝑡)

𝑆𝑖,𝑘 ≔max
𝑡∈𝑇

𝜎𝑖,𝑘(𝑡)

▪ Definition:

Time [hour]
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Aliasing score (3)

3. Normalize local sensitivities

𝜎𝑖,𝑘 𝑡 ≔
𝜎𝑖,𝑘(𝑡)

𝑆𝑖,𝑘

4. Calculate pair-wise aliasing metric 

𝛼𝑖,𝑗
𝑘 ≔ max

𝑡∈𝑇
𝜎𝑖,𝑘(𝑡) − 𝜎𝑗,𝑘(𝑡)

5. Transform to aliasing score

𝐴𝑖,𝑗
𝑘 ≔ 100 ∙ max 1 − 𝛼𝑖,𝑗

𝑘 , 0

𝜎𝑖,𝑘 𝑡

▪ Definition:

Time [hour]
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Working with the Aliasing Score

https://github.com/mathworks-

SimBiology/AliasingScoreApp

https://github.com/mathworks-SimBiology/AliasingScoreApp
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Practical identifiability – profile-likelihood

• One-at-a-time sampling of each parameter 

across its domain to calculate log-likelihood

• If log-likelihood is very flat and wide, the 

parameter is practically non-identifiable

• If log-likelihood function is sharp and narrow, 

the parameter is practically identifiable
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Local vs Global Optimization

There is only one way to the top …

… because there is only one top
But what if there were local maxima (red)?

This is where global optimization can help

Note: global optimization will not necessarily solve identifiability problems!
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Hold-out

data

Model 

Selection
Identifiability Analysis

Global Sensitivity Analysis

Influential parameters

Model Calibration 

Hold-out 

validation

Final model

Hold-out 

evaluationHold-out data &

Uncertainty Quantification
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Hold-out data can help gain confidence in model predictions

▪ Hold-out data: data the was never used to calibrate the model but that the 

model should be able to predict

– In this case: data from Kasichayanula et al.

▪ Comparing predictions from the calibrated model to hold-out data

▪ Consider:

– Re-estimating non-mechanistic PK 

parameters for hold-out data to 

account for differences between 

studies

– Then test whether mechanistic PD 

model is able to predict hold-out 

results
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Uncertainty Quantification

▪ Prediction confidence intervals = “This set of parameter estimates is a good 

approximation of the true parameter values that generated the data”

– Assuming the model is able to represent the data

– Post-hoc calculation: Gaussian approximation assumes model is linear in parameters 

(different from a linear ODE)

– …or use bootstrapping – sampling approximation of confidence intervals (expensive) 

▪ Monte Carlo approach (overlaps with Virtual Population approach)

– Sample parameter space

– Simulate model for each sample

– Investigate statistic of model response, e.g. 95% quantile region in simulated AUC
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Agenda: Parameter Estimation

▪ Central concepts

– Objective function

– Optimization 

▪ Mechanics of parameter estimation

– Setting up an optimization

– Pitfalls

▪ Workflow to guide estimation process

– Sensitivity analysis

– Identifiability analysis

– Confidence intervals

▪ Why did we do this?
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Why did we do this again?

With my calibrated PCSK9 model, I can

▪ … go to the project team with this model and my colleagues can ask me to 

simulate hypothetical scenarios

▪ … have an appropriate level of confidence in model predictions

▪ … quantify the uncertainty

– Parameter estimates

– Predictions


