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Local search:
“step-wise” regression

e Base (covariate free) model
— Keep known physiology in mind
— Compare compartment structures

* Residual error structure to minimize systematic errors
* Inter-individual variability where identifiable

— Lag-time or mixture models if relevant

* Final model
— Baseline structure
— Single covariate forward addition
— Single covariate backward elimination



Local search:
“step-wise” regression
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Genetic Algorithms
 What are they?

— A means of evaluating factors in a model where
more than one factor can be changed at a single
step.

— Partially automated to allow a more “complete”
evaluation of the full grid search space for a
particular candidate model.



Genetic Algorithms

* Approach:

— Replicate “survival of the fittest”

— Evolutionary process is imposed on the selection and
“survival” of the “best” model descriptions

— Calculate an indicator of how “healthy” a particular
individual model in the population is

— Utilized in multiple fields e.g. placing cell phone towers,
predicting stock performance etc.



Genetic Algorithms

“good” characteristics become more likely
Efficient at finding “good” regions of solution space
Slow to converge local “best”

Adaptations
— Elitism
e Retain best candidate to next generation
— Local search hybrid
 Compare candidate with each model differing by 1 bit
* Every 5 generations



Genetic Algorithms

Implementation in the context of population PK modeling (Bies
and Sale 2006, JPP August, Sherer Sale and Bies 2012 JPP)

Potential models are reduced to a bit-string (base-2 number
assembly) that reflects the model “genetic” code

Each model feature is coded as a base 2 number

— If there are 2 options the values are 0 or 1 [(0) (1)], if more
than two options then one has multiple bits eg. [(0 0), (0 1), (1
0), (11)]

Features are strung together to produce aforementioned bit
string

Model can be reproduced based on the bit string that results



Global optimization:
genetic algorithm

* Single-objective
— Default composite fitness measure (initial implementation)
e -2 x log-likelihood

* Penalty per model variable (10 points)

* Penalties for failure to converge (400), covariance (400), and
correlation (300)



Model Selection

Compartment structure Residual error IV on CL Weight on CL
1 compartment Additive No relationship No relationship
1 compartment w/ lag Proportional Additive Additive
2 compartments Combined Proportional Proportional
2 compartments w/ lag Exponential Exponential
Power-law

Weight on V
No relationship
Additive
Proportional
Exponential
Power-law

. 2

NONMEM

t

e Model evaluation criteria
— -2 x log-likelihood

— Number of parameters
— Diagnostic plots




Basic genetic algorithm

Candidate models (N = 300 — 500)

Candidate 1.

Compartment structure Residual error
1 compartment Additive
1 compartment lag Proportional
2 compartments Combined
2 compartments lag

Candidate 2.

Compartment structure Residual error
1 compartment Additive
1 compartment lag Proportional
2 compartments Combined

2 compartments lag

Candidate 3.

Compartment structure Residual error
1 compartment Additive
1 compartment lag Proportional
2 compartments Combined

2 compartments lag




Basic genetic algorithm

Candidate models (N = 300 — 500)

Candidate 1. Fitness = 1,000

Compartment structure
1 compartment
1 compartment lag
2 compartments
2 compartments lag

Residual error
Additive
Proportional
Combined

Candidate 2. Fitness =1,200

Compartment structure
1 compartment
1 compartment lag
2 compartments
2 compartments lag

Residual error
Additive
Proportional
Combined

Candidate 3. Fitness =1,050

Compartment structure
1 compartment
1 compartment lag
2 compartments
2 compartments lag

Residual error
Additive
Proportional
Combined

Evaluate fithess
using NONMEM



Basic genetic algorithm

Candidate models (N = 300 — 500)

Candidate 1. Fitness =1,000

Compartment structure
1 compartment
1 compartment lag
2 compartments
2 compartments lag

Residual error
Additive
Proportional
Combined

Candidate 2. Fitness =1,200

Evaluate fithess

Compartment structure
1 compartment
1 compartment lag
2 compartments
2 compartments lag

Residual error
Additive
Proportional
Combined

using NONMEM

Candidate 3. Fitness =1,050

Compartment structure
1 compartment
1 compartment lag
2 compartments
2 compartments lag

Residual error
Additive
Proportional
Combined

10

01

Binary representation of model decisions



Basic genetic algorithm

Candidate 1. Fitness =1,000

Compartment structure Residual error
1 compartment Additive

1 compartment lag Proportional - °
2 compartments Combined Re p ro d u Ct I O n :

2 compartments lag

01 10 Randomly select two
models from the
candidate pool based

Candidate 3. Fitness = 1,050

on nhormalized fitness

Compartment structure Residual error
1 compartment Additive -
1 compartment lag Proportional
2 compartments Combined
2 compartments lag

10 01



Basic genetic algorithm

Candidate 1. Fitness = 1,000

Compartment structure Residual error
1 compartment Additive
1 compartment lag Proportional

2 compartments Combined C ro S S Ove r :

2 compartments lag

01 Al 0 Randomly select a model
location

Candidate 3. Fitness = 1,050

v
Compartment structure Residual error
1 compartment Additive
1 compartment lag Proportional
2 compartments Combined
2 compartments lag

10 01



Basic genetic algorithm

New candidate 1

Compartment structure
1 compartment
1 compartment lag
2 compartments
2 compartments lag

Residual error Crossover:

Additive
Proportional

Randomly select a model
10 01 1 location

Residual error

Additive

New candidate 2 Swap model information
Compartment structure Combined
1 [ ] [ ] [ ]
o g with probability P
2 compartments
2 compartments lag

crossover

10 10



Basic genetic algorithm

New candidate 1

Compartment structure Residual error
1 compartment Additive
1 compartment lag Proportional

2 compartments Combined IVI u ta t i O n :

2 compartments lag

10 00 Randomly select a model
location

New candidate 2

Compartment structure Residual error

Change model information
1222E2:t22:tlag ProL;()I\r/;onaI Wlth proba billty P

2 compartments Combined
2 compartments lag

mutation

10 10



Basic genetic algorithm

New candidate models

New candidate 1.

Compartment structure Residual error
1 compartment Additive
1 compartment lag Proportional
2 compartments Combined

2 compartments lag

New candidate 2.

Compartment structure Residual error
1 compartment Additive
1 compartment lag Proportional
2 compartments Combined

2 compartments lag

Repeat reproduction,
crossover, and mutation
operations until a new
candidate pool is created

Repeat process for desired
number of 30-50
generations
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Select feature

Gene 1, # of compartments, code is 0,1;
Options for number of compartment:
:g‘giz (0,0)=1 compartment, first order absorption
(1:01 - (0,1,)=1 compartment, first order absorption, lag
(1,1)= (1,0)= 2 compartment, first order absorption

(1,1,)=2 compartment first order absorption, lag

Insert code for selected feature into model template

$PROB GA MODEL
$SUBS ADVANS TRANS1

Compile and run resulting model

Adapted from
Br J Clin Pharmacol 2013 Jun 17 Epub ahead of print

Figure 3. Coding of model features and translation into 2 medel. If only two cptions are examined for a
feature {e.q., the effect of Gender on Clearance) only 1 bit will be needed for that gene. If more than twao
opbons are examined (e.g., 4 for the basic structure, number of compartments) more than 1 bit s reguired
for that gene. The final genome for each model Is constructed by concatenating all the genes together into
@ bit string.



Covariate Search Comparison

e Evaluation of performance of multiple methods
— True model simulated with relatively dense sampling

— Exponential relationship with BMI and CrCL on
clearance

— Exponential relationship BSA and Sex on volume

— Compared:
e Stepwise Covariate Modeling
e LASSO (least absolute shrinkage and selection operator)
* Single Objective Hybrid Genetic Algorithm



Covariate Search Comparison

Tuble ¥ True and spuricas covariale relationships ddentified in the simalsied data by the sulomaied stepwise covanate modeling, Lesso, and
SOMGA approackes and the models £ characieristics

Method “True™ covaniates Spumious covariabes Objective
Clearanpe Vodume of distribation Clearance Yolame Fonesrin il
af distribugion
(rigical model BMIL, CROCL B5A, Sex &lo].2

Stepwine coveniste modeling (SCM):
g value far inclusioo,
p value for elimination

.05, 0L05 BML CROL Sex WT HT, CV1 BOES.9

.05, Ll BML CROL Sex HT, CVY1 el 1

.10, ol BML CROL Sex HT, CV1 Gl |

Lesso madel ML CROL B254. 2
Single-ohjective, hybmid genetic algaritbm

3.84 paint penzlly per parameier BMIL CROL Sex B5A HT, CV1 ¥

I{} point penalty per parameler EMILL CROL Rex HT BORT.Q

BMY body mess index, 854 body surface area, CRCL crestimine clezrance, OV unrelaled covarizte 1, 8T Reight, WT weight

Sherer et al 2012, JPKPD



Single-objective, hybrid genetic
algorithm (SOHGA)
VS.
step-wise approach

Pharmacokinetic data for Risperidone

ldentical model options / decisions

Compare information criteria of final models

Compare model structures
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~ Risperidone Oral 490 1,236

ADVAN2, TRANS2 FO 9
ADVAN4, TRANS4
(with 1, 2, or 3 clearance

subpopulations)




Oral 490 1,236

ADVAN2, TRANS2

ADVAN4, TRANS4

(with 1, 2, or 3 clearance
subpopulations)

Final step-wise model Best Final step-wise Best SOHGA

SOHGA model candidate

candidate
Required fixing K, early  Successful Successful (60) Successful
in model building (1.17x106)

process




Oral 1,236

ADVAN2, TRANS2

ADVAN4, TRANS4

(with 1, 2, or 3 clearance
subpopulations)

Final step-wise model Best Final step-wise Best SOHGA
SOHGA model candidate
candidate
Required fixing K, early  Successful Successful (60) Successful
in model building (1.17x106)
process

IRERSiEeReIeEl AiCc=5,131.1 AIC = 4,853.0 -278.1



Model structure: SOHGA vs. step-wise

Risperidone, oral 1 with 3 component mixture on CL 2 with 2 component mixture on CL

e Extra degree of freedom

— Fix k, based on literature due to instability
* Risperidone (AAIC=-278.1)

— 1 covariate in final stepwise model
— 5 covariates in best SOHGA candidate



Example Model Search Space

An example:

e Structure: 1, 2 compartment distribution model

* Covariates: Weighton CL,V | AgeonCL,V | Sexon CL, V
* Linear: TVpgram = THET A, + ((Cov; — Cov) * THET Ag)
* Exponential: TVpgrgm = THETA, * e(Covi_COV)*THETAB

» Statistical: Additive, Proportional, Combined




Example Model Search Space

* Total number of models:
e 2%3*3%3%*3*2%*2*3 = 1944 possible combinations
| L Additive vs Proportional vs Combined Error Models
Sex on V (None, Additive Shift)
Sex on CL (None, Additive Shift)

Age on V (None, Linear, Exponential)

Age on CL (None, Linear, Exponential)

Weight on V (None, Linear, Exponential)

Weight on CL (None, Linear, Exponential)

1 vs 2 compartment




Example Model Search Space

* Total number of models:
o 2%3%3%*3*3%2%2%*3 = 1944 possible combinations

Weight on Weighton AgeonCL AgeonV SexonCL SexonV Error Model

CL \'
1 1 None None None None None None Additive
2 1 Linear None None None None None Additive
3 1 Exponential | None None None None None Additive
4 1 None Linear None None None None Additive
5 1 None Exponential | None None None None Additive
1944 2 Exponential | Exponential [ Exponential | Exponential [ Additive Additive Combined




Outline of Updated GA

Run candidate Stop after, .
el e s convergence criteria

NONMEM i

Randomly select

initial population of
n models

Crossover  pes Determine the

“fithess” of the
model



Initial Population

* n models, or “individuals”, are randomly

selected from the pool of all combinations

* Models are run simultaneously

Randomly select

initial population B 2

[\

of n models

~————

A

e

CL

225
343
800
1284
1491

N TN N PR

Linear
Linear
Exponential
None
Exponential

Exponential

None
Exponential
None
Linear
Exponential

None

Linear
Exponential
None
Exponential
Linear

None

Exponential
Linear
Linear
None
Exponential

Linear

None
None
None
Exponential
None

None

Exponential
None
Linear
None
None

Linear

Additive
Proportional
Proportional
Combined
Additive
Additive




Fitness

* How to determine how “fit” a model is?

Run candidate

models by calling é

NONMEM
\ A

Determine the

e

-

“fitness” of the
model

A




Fitness

* How to determine how “fit” a model is?
* NONMEM objective function?

Run candidate

models by calling é

NONMEM

Determine the
“fitness” of the
model

e

/

S




Fitness

* How to determine how “fit” a model is?
* NONMEM objective function?

* Objective function + Penalty terms

Run candidate

models by calling é

NONMEM

Fitness = —2LL + 2 * Npg, + 20 * Penalt)’Converge + 10 * Penaltycopar

\ )
!

AIC




Selection

* Tournament style selection

* Ranked selection method

* |deal when fitness values are close
in magnitude

for each model i
choose a random opponent model j (excluding
i)
the more fit model wins the tournament
winner proceeds to the cross-over pool

—_— —_—
o
of models
-—

Initial Population Crossover Pool
Model | Fitness mm
83 100
225 102
343 98
800 94
1284 103
1491 109




Selection

* Tournament style selection

 Ranked selection method

* |deal when fitness values are close
in magnitude

for each model i
choose a random opponent model j (excluding
i)
the more fit model wins the tournament
winner proceeds to the cross-over pool

_ —_—
[\
Determine the
e
-—

Initial Population Crossover Pool
Model | Fitness mm
83 100 800 94
225 102
343 98
800 94 |
1284 103
1491 109




Selection

* Tournament style selection

* Ranked selection method

* |deal when fitness values are close
in magnitude

for each model i
choose a random opponent model j (excluding
i)
the more fit model wins the tournament
winner proceeds to the cross-over pool

_ —
Determine the
next generation
of models
—

Initial Population Crossover Pool
83 100 800 94
225 102 225 102
343 98
800 94
1284 103 ‘

1491 109




Selection

—_ —>
* Tournament style selection / \
* Ranked selection method Detemine e
* |deal when fitness values are close -
in magnitude
Initial Population Crossover Pool

for each model i mm mm
83 100 800 94

choose a random opponent model j (excluding

i)

the more fit model wins the tournament 225 102 225 102
winner proceeds to the cross-over pool 343 98 343 98
800 94 800 94
1284 103
1491 109 ‘



Selection

* Tournament style selection

 Ranked selection method

* |deal when fitness values are close
in magnitude

for each model i
choose a random opponent model j (excluding
i)
the more fit model wins the tournament
winner proceeds to the cross-over pool

—_s —>
Determine the
o models
A S
Initial Population Crossover Pool

83 100 | 800 94
225 102 225 102
343 98 343 98
800 94 800 94
1284 103 83 100

1491 109




Selection

* Tournament style selection

e Ranked selection method

* |deal when fitness values are close
in magnitude

for each model i
choose a random opponent model j (excluding
i)
the more fit model wins the tournament
winner proceeds to the cross-over pool

—_ O
Determine the
next generation
of models
-—
Initial Population Crossover Pool

83 100 800 94
225 102 225 102
343 98 | 343 98
800 94 800 94
1284 103 83 100
1491 109 343 98



Crossover

* Mimics biological reproduction

* Combines elements of well performing — —
models to produce potentially more fit /v —_— \ —
models

* Two-point crossover




Crossover

Parent Chromosomes

Mode Fitnes N, Weighton Weight on AgeonCL AgeonV SexonCL SexonV  Error Model
I s CL Vv

T

800 94 2 None Linear Exponential None Exponential None Combined

343 98 1 Exponential None None Linear None Linear Proportional
A

Progeny

Mode Fitnes N, WeightonCL Weight Age on CL AgeonV SexonCL SexonV  Error Model
I s T onV

None None Linear None Combined

Exponential Linear Exponential None (Il Linear Proportional




Mutation

for each model i — —_—
for each gene j ; / ; ,
mutate gene (T/F) with probability 0.05 / \
if (mutate gene = T)
newPhenotypelndex = sample integer from 1 to length of phenotypes Determine the
phenotype = phenotypes[newPhenotypelndex] et models
gene[j] = phenotype -—
Mutate: F F F F T F F
Weighton Weighton AgeonCL AgeonV SexonCL SexonV Error Model
CL Vv
None None None Linear Ad\iotrinee None Combined




Outline of GA

Randomly select Run candidate Stop after
initial population of models by calling convergence
n models NONMEM criteria met

Determine the
next generation

of models Determine the

“fitness” of the
model




Software

. N~ LA

Perl speaks NONMEM

shell()

> NONMEM 7.4

XNEOSE

Development of
user interface




University at Buffalo
The State University of New York

Development of NONMEM Workbench

to Implement Genetic Algorithm
o=

@M B Current Directony: test

Cantral Stream Preview Data
;1. Based on:
. 2. Description: 1 CMT, INF, Prop RUY, no covariates ETA | EPS | Structure Custom
FPROBLEM 1
$INPUT C 1D AMT RATE DUR TIME DY MDY EVID WT Pia SEX Token Group Token Set Token
FDATA examplel_g CSY IGNORE=C e IFTHETA 1))
FSUBROUTINES ADWANS PhdAonCL Lingar (-50,.001 500, WWTonCL
SERMonCL Mone
SMODEL Power
COMPICEMTRALT DEFDOSE DEFOBS)
v ez
P D
DUMMY = ETA(1) renew
TYCL=THETA{) {WTonCL} {PWAonCL} {SEXMonCL} {IvonCL} |
CL=TvWCL
TVW=THETA(Z) (WTonv) {PMAcny} {SExMany) {IVonv) Select Covariate
WETVY
K10 = CcLv T -
S1=Y
LI=buR Select Covariate relationships
FERROR Mone  Linear = Power | Exponential | Proportional
IFRED = F
IRES = DW.IPRED . . .
W = SORTIPRED™2 * SIGMA(T 1) + SIGMARZ.2)) Center Covariate (Median) . Required {Token Group} in
IWRES = IRES/W FPK
Add Selected Token Sets
Y= ERED + EREDEPS() + E25) FTHETA

SESTIMATION METHOD=1 INTERACTION PRINT=5 MAR=3339 MSFO=1 MSF NOABORT

FTHETA
nn3);cL




Case Study: Tumor Progression Modeling

e Unperturbed tumor growth trajectories of
22 LNCAP xenograft tumors were selected 60001
as test dataset

Tumor Volume
=
=
[
=

]
[en]
=
o

40 50 80 100
Time (Days)



Case Study: Tumor Progression Modeling

Hof |#ofllV |#of |Numberof
0 per 8 | RUV* | Unique models

e 1584 unique models were created by the
GA app with the combinations listed to

i av 2 —
the right: Exponential " A XV 2 4 3 45 x 3 =48
3 —
Power %=AOXV7 3 4 3 4°x3 =192
Logistic av 4 3 4 3 43x3=192
R X X — —
i A XV x(1 T
Gompertz dv TUMpqx 3 4 3 43%x3=192
dt—h,xVxlog( v
Simeoni ﬂ _ Ay XV 4 4 3 4*x3 =768
dt

1+ (;& X V)P
1

Koch [1] ﬂ_ A XV X2 %N\ 3 4 3 %3 =192
dt ~ (A +2%x¥ XV)

Sum: 1584

* The four IV structures are: none, additive, proportional, and exponential.

[1] Koch G1, Walz A, Lahu G, Schropp J. Modeling of tumor growth and anticancer effects of ** The three RUV structures are additive proportional and additive plUS
combination therapy. J Pharmacokinet Pharmacodyn. 2009 Apr;36(2):179-97. . ’ ’
proportional.



Case Study: Tumor Progression Modeling

Based on the available Computation power Mean and Minimum Fitness Values versus Generation
3100
(40 available cores), run 38 models e
— Inima
simultaneously. 3000 4

It took on average 4 minutes to run a
generation. 2900 1

The algorithm found the best model by the
15th generation

Fitness

2800

To confirm model convergence, the system
was allowed to continue for a total of 30
generations. 2600

2700

250 out of 1584 unique models were run by . . . . .
5 10 15 20 25 30
the 30th generation. Generation



Case Study: Tumor Progression Modeling

» The Koch growth model performed best for the
xenograft tumor dataset. J750 |
* Fitness value of 2572 ¥

2725 A

oad

* The model with the best fithess had the following

IIV characteristics: e v

* An exponential IV model on AO cik

* An exponential IV model on A1 2650

Fitness Function

O G0

* An exponential IV model on baseline. —

2600 - (@]

* The residual error model selected was additive
plus proportional.

» Standard step-wise approach conducted by 25751 %
blinded colleague resulted in fithess value of Koch  Simeoni  Power  Gompertz  Logistic  Exponetial
Model Tvpe
2748 (Simeoni structure)

Top five fitness values for the six commonly
used growth model categories



Model Selection Results

The Koch growth model performed best for the test dataset. The model with the best
fitness had the following IV characteristics: a exponential IV model on AO; exponential
[IV model on A1; and exponential IIV model on baseline;. The residual error model
selected was additive plus proportional.

2750 A O 5000 |
O
¥

2725 4 soo0 4 PRI e e
< 2700 v oo ]
g 2675 @
§ 2650 g § =
5 o) o
- 2625 O 2000

2600 o 1000 |

2575 A %

0 oo
Kolch Siméaoni Povlver Gomlpertz Logistic Expohetial T T 1 1
Model Type 40 60 . 80 100

The plot of the top five fitness function for The VPC plot for the Koch model with the best fithess

the six commonly used growth model value of 2572. The red dashed lines are the predicted

categories (Koch, Simeoni, power, 5t and 95t percentiles.

Gompertz, Logistic, and exponential).



Model Selection Results

The best fitness function of the GA selected model is 2572 for the Koch model, while the typical

approach to model building conducted by a “blinded” colleague resulted in a fithess of 2748 for a

Simeoni model. In addition, the best Simeoni model found by GA gets a fitness function of 2602.

The VPC plot for the Koch model with the best fithess
value of 2572. The red dashed lines are the predicted
5t and 95t percentiles.

Dependent variable

15000~

10000~

5000~

!__!_l__.__J_I_I_J—J—l—:.::

4o 60 g0 160
Independent variable

a.o..'
iiae i 14
L ]

The VPC plot for the manual picked Simeoni model
with the fitness value of 2748. The blue solid lines are
the predicted 5 and 95t percentiles.



Limitations of SOHGA

Only post-hoc visual predictive checks
Single-objective

— Ad hoc (user defined) weighting scheme
* i.e., 10 points / parameteris x> = 0.0016

Equally valid yet very different candidate
models are possible

Does not consider feasibility

* Could modify weighting scheme



Conclusions

« The genetic algorithm identified a mixed effect model for
risperidone PK and tumor trajectories that had substantially
better OFV (and converted fithess) compared with the standard
model search strategy.

* The current app can improve the accuracy and efficiency of
model development. An automated solution for population
PK/PD modeling will allow modelers to focus on hypothesis
generation and model evaluation rather than text processing
and model execution.
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