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Background: Antibody Drug Conjugates

~ 75 Antibody Drug Conjugates are in clinical trial
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@Background: Bystander Effect of ADCs
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In a heterogenous tumor

ADC goes to Ag+ cells and gets internalized followed by degradation in lysosome and. 

Part of the released drug kills Ag+ cells and part diffuses into Ag- cells and kill those cells. So we end up seeing much higher efficacy in a heterogenous tumor.


“Our Motivation: Tumor Heterogeneity
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Our Main motivation is tumor heterogeneity

Biopsy results from 1 breast cancer patient at three different sites. 
Tremendoes heterogeneity.
Targeted therapies alone like transtuzumab show less survival when u have heterogeneity as compared to homogenous tumors.

So we believe that ADCs designed to show Bystander effect can lead to much better efficacy in heterogeneous tumors


Our Hypothesis: Bystander Effect

Quantitatively characterizing ADC disposition at

a cellular level will help us understand

Bystander Effect in vivo. Once validated, our

PK-PD model can then:-

|. ldentify Prominent Pathways/Parameters In
the system to maximize Bystander Effect

ll. ldentify novel dosing regimens to maximize

pystander effect.

lll. Inform target selection and ADC design for
future ADCs.
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So our hypothesis is that If we can understand and mathematically characterize Bystander effect on the cellular level, we can explain the in vivo Bystander effect much more efficiently. 
Once validated, our model can then identify prominent pathways and sensitive parameters to maximize Bystander Effect
We can come up with different dosing regimens which can maximize Bystander effect
Model can also inform in target selection and novel ADC design.


~ Tool ADC: Trastuzumab-vc-MMAE
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SO the tool ADC which we used is Trastuzumab-vc-MMAE with an average DAR of 4. 
Trastuzumab binds to HER2 (HERCEPTIN)
MMAE which is lipophilic microtubulule inhibitor (Binds to tubulin and inhibits the growth)
And VC linker which gets cleaved within the cell by Cathepsin B .
Here is the structure of the ADC, so cathepsin B cleaves the molecule here, and free mmae is released which can cause Bystander effect.
We synthesized and characterized this ADC within our lab. 


%evelopment of PK-PD model for Bystander Effect
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Quantify Bystander effect In vitro using Coculture of Ag+ and Ag- cells.
Understand the cellular disposition of ADC in both Ag+ cells and Ag- cells.
Then combine the cell PK with in vitro PD to make a in vitro Bystander effect model.
Translate the whole information to in vivo system and make PK and PD model for each xenograft mouse model.
And then combine the model to predict in vivo bystander effect in a heterogenous mouse model with both cells growing together.


%evelopment of PK-PD model for Bystander Effect
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Singh et al. JPKPD 2016
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So the first step is to quantify bystander effect in a Coculture of Ag+ and Ag- cells. 



‘Cell Lines with Different HER2 Expression
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We chose two cell lines.
High Expressing HER2 N87 cells which are relatively slow growing
And Low expressing MCF7 cells which are much more aggressive. The good thing about low expressing cell lines is that it has GFP label attached on it. So we can quantify FL. Hence, when we mix them together, we can quantify this population
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So the first step was to get individual viability profiles in vitro . 
On the left, we have MCF7 cells or low expressing cells. Where when treated with different concentrations of ADC, only the higher two concentrations were effective. 
On the right we have N87 cells/HER2 high cells where all the concentrations above 0.13 nM were completely killing the cells. . 

Hence we chose a concentration of 100 nM at which we knew no MCF7 cells will be killed but all the N87 cells will be killed and then we mixed the two cell lines together in the next experiment


@buantification of Bystander Effect In Vitro
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Here we mixed them together in different ratios of Ag+ : Ag- cells. So 50% means they are both 50:50. Then we divided into two groups which is the treatment group or the control group. 
Later we just measured Ag- cells in a mixture. 

Here is the data. So the red is the 100 nM treatment group and green is control. So what I am plotting on left is just Ag- cells in a mixture. 
When there were no Ag+ cells, 100 nM ADC was not effective. As we kept increasing the % of Ag+ cells, we started getting more killing of Ag- cells.
There was a delay because it took time for ADC to go in Ag+ cells and then release drug which can then kill Ag- cells. 


“Semi-mechanistic Modeling of Bystander Effect
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Table 1 A list of parameters used for the development of the bystander effect PD model and their estimated values

Parameters Units

Kmaxyg;, Kmaxycrr

Description

Maximum rate of T-ve-MMAE induced cell killing in
the respective cell lines

Estimate (%CV)

0.023 (7.8 %), 0.016 (4.1 %)

IC?;?, IC%C":7 nM Concentrations of T-ve-MMAE that produces 50 % of 0.19 (32.7 %), 353.3 (55.1 %)
macdmum killine in the respective cell lines

DTxgs7, DT yicrr h Doubling times for the two cell lines 40.1 (20.1 %), 33.6 (1.5 %)

VBT MCET Unitless Curve fitting parameter that determines the steepness of 1.1 (15.8 %), 2.48 (18.1 %)
the concentration-effect relationship for each cell line

T‘\;s?’ rgcm h Transit time parameter used for the cell distribution 9.1 (34.2 %), 18.9 (25.4 %)

Cell™ . CelMCH7 Number of cells

max? max

model applied to each cell line

Maximum achievable cell number per well for each cell

80,500 (34.2 %), 75,000 (1.86 %)

Kypp 1/h
TBE h

Bystander killing constant
Transit time parameter used to capture the delay in the
bystander killing

11.36 (15.2 %)
35.8 (13.9 %)
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Then to fit to propose the Bystander effect, we combine the two cell models together and fix them and introduce an additional killing rate that increases with more Ag+ cells within cell culture and introduce a delay. SO in the presence of Ag+ cells, u get more killing of Ag- cells. 
With that we were able to characterize the Bystander effect data and what we obtained were similar killing rates of ADC in both cell lines but very different KC50 values. 


%evelopment of PK-PD model for Bystander Effect

Aim 1

Aim 2

Aim 3

Aim 4

Aim 5

p

Quantification of Bystander Effect In Vitro

Develop a Coculture system of Ag+ and Ag- Cells

Development of a Single-Cell PK model for ADC

Perform Cellular Disposition Studies in Ag+ and Ag- Cells

Development of In Vitro PK-PD model for
Bystander Effect

Linking Intracellular Concentrations to drive Cytotoxicity

! Development of In Vivo Tumor PK-PD model for

Xenografts bearing Ag+ and Ag- Cells

Perform Tumor PK and Tumor Growth Inhibition (TGI) Studies

Development of In Vivo Tumor PK-PD model to
Characterize Bystander Effect

Perform TGI Studies in Heterogeneous Tumor Model with Ag+ and Ag-

Singh and Shah, Drug. Metab. Disp. 2017
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But what we really wanted to make was a PK-PD model for Bystander effect.. So the next step was to develop cellular disposition of ADC in two cell lines. 



“'Different Analytical Methods for T-vc-MMAE
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Since ADC is a heterogeneous molecule, we developed three analytical techniques, 
Total Antibody:- measures all the Antibody
Total MMAE:- Measure all the drug
Free MMAE:- measures the released Drug. 
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Single-Cell PK Model for MMAE #5%%
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So we developed a single cell model for MMAE. We call it a single cell because we assume each cell as a compartment. So u have media space and multiple cellular spaces, as many as the number of cells which are growing with time. The drug can go in and out using Kin and Kout parameters and can bind to tubulin. And then whatever comes out of one cell gets amplified by the number of cells. 

With that we are able to fit the data for both the cell lines reasonably well and utilize all the physiological parameters. Just estimating influx and efflux rates.
Once that we characterized the disposition of MMAE, the next step was to do the disposition of T-vc-MMAE


.

Single-Cell PK model for T-vc-MMAE

Parameters Description Units Value Source
. 0
Media | Tumorcell  (CV% |
MVMMAE pyADC olume of the media compartment for Milliliter 3,10 leedC. 1
MMAE %gg-vc-w*mwlel respectively - ng
K
SF medsaaling ftor tg convert the number of” KADC  Unitless Fixed
ADCT g ARC el b
ADC Q)
V87 yMcE7 qumKQfﬁachlcell Y \4 | Fixed
DTN87 pTMCF? oubling time absogfated with acqu:bme* m I (Singh et al., 2016b)
TubulinTeta! otal concentraljeh of intracelllilar tutfid n I (Shah et al., 2012)
KTub gTub K ABEer fadsociation  and 154 (Shah et al., 2012)
issggiﬁ' n ra‘es of MMABR
Ubulj |
KADC, KADC MMA %ed_iﬁ?r adsogiddong and (Maass et al., 2016)
ifsociaggn ratps OfoTLuC-MMA
HER2 |
KaRC 1t order ne 1/hr 0.11 I (Maass et al., 2016)
internalization rgte in
KADC 1st order non—sgeu"fic-deoenjugation rate of Cell O - N (t sc‘tirc;gted to be very low
fee f ADC V‘ = I
MMAE from value
DAR Average Drug: Antibody Ratio for the Unitless 4.5 Calculated using HIC
formulation of T-ve-MMAE (Singh et al., 2016b)
AgCell, Number of HER2 receptors on N87 and Unitless 950,000, In-house
GFP-MCF7 cells respectively 52,000
KNS7, KYCF7 1%t order rate of proteases-induced 1/h 0.03 (Maass), Estimated
intracellular ADC degradation and MMAE 0.353 (9%)
release
KMMAE 1st order inflow rate constant for MMAE from 1/h 8.33 (8.5%) Estimated
extracellular space to intracellular space for MMAE Modeling
N87 and MCF7 cells respectively.
KMMAE 1st order efflux rate constants for MMAE 1/h 0.199 (22%) Estimated
from intracellular space to extracellular

space for N87 and MCF7 cells respectively
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So now we can expand our Single cell model to characterize the disposition of T-vc-MMAE. 
So again the assumption is multiple cell compartments which are growing with time. ADC in media can bind, internalize, degrade and release MMAE which can then bind to tubulin or come out. Whatever comes out of once cell can be amplified by the number of cells. 

We had most of the parameters available in the literature including the Binding parameters, internalization, physiological volumes of the cells, total tubulin Binding capacity as well as HER2 receptor expression levels.  So we just ended up estimating the degradation rate for the two ADCs. 


‘Model Predictions for 3 Analytes of T-vc-MMAE
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With that we were able to explain all the data very well, for three analytes in media and cell space for Ag+ red and Ag- (green) cells. The dotted lines here was a slower degradation rate which worked out better for short term exposure data v/s long term exposure data where a faster degradation was beter. 
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