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What do we mean by reproducibility?
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e Britalar’s angry white men . . .
I'he How 15 4o a ruclear deal withiran reproducible if an independent

Economist e investigator accessing published work can
Junk bonds are back

Tho mesadin of Sachis osbuiar replicate them.
« Computational repeatability: a result can be
H w replicated with the same data and software
Algorithmic reproducibility: a result can be A
_ replicated with the same data and different g5
J software implementing the same algorithm 3’
9%
Scientific reproducibility: a result can be
s replicated with the same data and a different
- algorithm
WRGNG. replicated with independent data and
algorithms
The Economist, 20132 2

193U0.J]S

Empirical reproducibility: a result can be




Some Definitions:

Repeatability:
From NIST:

In metrology, the component of measurement precision that is the variability in the short
term, and that occurs under highly controlled situations (e.g. same metrology instrument,
same operator, same setup, same ambient environment, etc.)

From SIX SIGMA:

In Measurement Systems Analysis, repeatability is the variation between measurements
that occurs when one person measures the same item several times, using the same

measuring equipment.

NIST Technical Note 1297
1994 Edition (Supersedes 1993 Edition)
http://physics.nist.gov/Pubs/guidelines/appd.1l.html



Some Definitions:

Reproducibility:
From NIST:

In metrology, the total measurement precision, especially including the components of
variability that occur in the long term, and occurring from one measurement instrument to
another, one laboratory to another, etc.

From SIX SIGMA

The amount of variation in a measurement system assigned to differences in employees,
measurement tools and equipment, techniques, setup or other physical factors. Any factor
can be used for reproducibility, but typically employees or measurement tools are the most
commonly used variables.

NIST Technical Note 1297
1994 Edition (Supersedes 1993 Edition)
http://physics.nist.gov/Pubs/guidelines/appd.1l.html
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1% of Preclinical Studies Could not be
Reproduced
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C. Glenn Begley and Lee M. Ellis propose how methods, publications and incentives must
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Needle in a Haystack

3 INTERACTIONS BETWEEN MNa, 1.7 AND Na,l 8

2006; Goldberg et al. 2007), we examined the affects of
variations in the level of expression of Na, 1.7 in DRG neurons
in which Na, 1.8 is present.

MATERIALSE AND METHODS

Computer simulations. The electrical properties of small sensory
neurons were simulated wsing the NEURON program (version 7.1)
{Hines and Carnevale 1997). Sodium and potassium conductances in
the present study incorporated parameters described in previous re-
ports {Herzog et al. 2001; Sheets et al. 2007). Conductances were
maodeled using Hodgkin and Huxley-type (HH) descriptions {Hodgkin
and Huxley 1952) of the various voltage-dependent currents. For
analysis of theoretical electric charge movements passing though
maodel sodium channels, we calculated arca under the sodium current
using OriginPro 8.1 software (Microcal. Northampton, MA).

Passive membrane properfies of the model meiron. Action potential
firing was studicd using a single compartment cylindrical model of
length 30 g and radius 23 pwm, simulating 2 small sensory nearon
with a 2168 pm’ surface arca and 20.2 pFﬁ:m: capacitance, based on
electrically and microscopically measured values (Choi et al. 2007).
The specific resistance of the cytosol was set to 123 {em.
Simulations were performed assuming a temperature of 22°C, the
temperature at which the experimental data were recorded (Choi et
al. 2007). The integration method was Backward Fuler at an

Ky potassium current. The Ky, current was defined as: ., =
Bgrp * R Y (V — E). where ggpy is the delayed rectifier potassium
conductance and a is a dimensionless activation variable that varies
between 0 and 1. The kinetic characterization of the channel described
by Schild et al. (1994) has been used with alpha, = 0.001265 * (V +
1427301 — exp[{V + 14.273)/—10]); beta, = 0.125 * exp(V +
55/—2.5); and me = V{1 + exp[(V + 14.62)/—18.38]). The peak
conductance for Kpp (8yn,) was set to 0.0035 Sfem?, which comre-
spoads to & nA potassium current at 0 mV,

K, potassium current. The K, current was defined as: I, = gy,
*a*h* (V- E) where ggy is the A-type potassium conductance
and n and & are dimensionless activation and inactivation variables,
respectively, that vary between 0 and 1. The kinetic characterization
of the channel described by Gold et al. (1996b) has been used with
doide = (noy — nlng; dhidr = (hp — WAL mee = (L1 +
exp[—(v + 54016411 * 4 A= (025 + 1004 * exp(—{[iv +
Z46T) 4 22 * 348 A Dk e = V{1 + expl(v + 4990461}
B = (20 + 50* cxp{— [{v + 40) * 212 * 40 * 23} ); if e, < 35 then
h,,, = 5. The peak conductance for K, (gg, ) was sct to (L0055 Slem?,
which comresponds to 1 nA potassium current at 0 mY.

Na 1.7 sodium curreni. The TTX-S sodium conductance from
small DRG neurons was fitted to the conventional HH model for
sodium conductance: fy 2 = ez "M *m* m " h*5* (V —
Ep,). where gp.q7 is the WT fast inactivating Na, 1.7 sodium
conductance and m. &, and 5 are dimensionless activation, fast inac-

Can you spot the error?

Physiological interactions between Na, 1.7 and Na, 1.8
sodium channels: a computer simulation study

CULBEANL CUEICHL NGTULIIE U1 S0AM, W00, T ILSW, MU T300% P,
respectively. The size of the current was adjusted so that its amplitude
cDrrl:spDnded 1o an input resistance of 579 M{Y: g, = 0.0000575 §
em ~, similar to that reported for small DRG newrons (Chod et al.
2007).

Voltage-dependent curvents. The DRG newron mode] included a
leak conductance, two potassium conductances (A-type and delayed
rectifier), and, since we wanted to study the interactions of Na, 1.7 and
Na, 1.8, two voltage-sensitive sodium conductances: Na, 1.7 conduc-
tance and Na, 1.8 conductance. We included a delayed rectifier con-
ductance and a transient potassium conductance to reflect the predom-
inant pofassium conductances in small DRG neurons, a sustained
(delayed rectifier type, Kpg ) conductance and a transient (A-type, K,
conductance {Gold et al. 1996b). The majority of small (=25 pm
diameter) DRG neurons exhibit both TTX-S and -R currents (Cum-
mins and Waxman 1997). Although many small DRG neurons express
meore than one TTX-5 sodium channe] isoform (Black et al. 1996), the
major TTX-8 current in the majority of small DRG neurons appears
it be produced by Na, 1.7 (Cummins et al. 1998). For this reason, and
because we wanted to study MNa, 1.7 and Na, 1.8 in isolation, the only
TTX-5 conductance included in our model simulates Na 1.7, Two
TTX-R channels, slowly inactivating Ma, 1.8 and persistent Ma, 1.9 are
present in small DRG newrons (Cummins et al. 1999). The persistent
TTX-R cumrent is largely inactivated by ultra-slow inactivation and
tends to be negligible when the cells are held at approximately — 60
mV (Cummins et al. 1999). Because of this, and because we wanted
o study Na, 1.7 and Na_ 1.8 in isolation, we oaly included Ma 1 8 as the
sole TTX-R curment in our model neuron. Specific details of the curment
models are given below. Throughout the text, we refer to the level of

best ﬁth|I| a HH model that emploved oaly one activation gate: 5 =
Braas *m Y R TV — Eg) where gy, 5 is the Na 18 sodium
conductance and m and h are dimensionless activation and inactivation
wvarighles that vary between 0 and 1. Based on previous reports (Hermog
et al. 2001; Sheets et al. 2007), we defined the following equations for
MNa lBmand b:m =m + [1 — exp{—dtftau }] * {m,; — m), h=h +
[1 — exp(—dihau,)] * (h,, — k), alpha_ = 285 — (28300[1 + exp
[{v — LI59W13.95]}; beta, = (7620501 + expl{v + 46.463)/B.8289] |
= lialpha_ + beta ): m. . = alpha Nalpha  + beta ) tau, =
(1218 + 42043 * exp{ —[{v + 38.1) * 2W2 * 1519 * 2% e = I/
[1 + expliv + 32.2¢4]]. The peak current of 25 nA was modeled by
seiting the peak value gp,,q g t00.026 Sfem”, which was chosen to match
experimental values (Choi et al. 2007; Cummins and Waxman 1997).

RESULTS

To investigate how the levels of expression of Na, 1.7 and
Na,LE affect the excitability of DRG neurons, we simulated
sensory neuron membrane conductances and analyred firing
properties in the single companment model using the NEURON
modeling program (Hines and Carnevale 1997). We used four
HH-type ion channel conductances (Na, 1.7, Na, 1.8, Kpg. and
K ) that have been previously described in the literature (Gold
et al. 1996b; Herzog et al. 2001; Schild et al. 1994; Sheets et
al. 2007) and that are shown in Fig. 1. The current amplitudes
were adjusted to match maximum conductances to the results
or prewous reporls (C‘h al al. 2007, ‘(’ang el al. 2004). The

Published 2011




Needle in a Haystack

MATERIALS AND METHODS

Computer simulations. The electrical properties of small sensory
neurons were simulated using the NEURON program (version 7.1)
(Hines and Carnevale 1997). Sodium and potassium conductances in
the present study incorporated parameters described in previous re-
ports (Herzog et al. 2001; Sheets et al. 2007). Conductances were
modeled using Hodgkin and Huxley-type (HH) descriptions (Hodgkin
and Huxley 1952) of the various voltage-dependent currents. For
analysis of theoretical electric charge movements passing though
model sodium channels, we calculated area under the sodium current
using OriginPro 8.1 software (Microcal, Northampton, MA).

Passive membrane properties of the model neuron. Action potential
firing was studied using a single compartment cylindrical model of
length 30 wm and radius 23 pwm, simulating a small sensory neuron
with a 2,168 wm? surface area and 20.2 pF/cm?” capacitance, based on
electrically and microscopically measured values (Choi et al. 2007).
The specific resistance of the cytosol was set to 123 (/em.
Simulations were performed assuming a temperature of 22°C, the
temperature at which the experimental data were recorded (Choi et
al. 2007). The integration method was Backward Euler at an
integration time step df of 0.025 ms. Simulations were performed
assuming free ionic concentrations of sodium ([Na'], = 140 mM;
[Na'], = 10 mM) and potassium ([K "], = 5 mM; [K ], = 140 mM),
which were used to calculate Nernst reversal potentials of +67.1 mV
(Ey.) and —84.7 mV (Ey), respectively. By analogy to the HH model
of action potential electrogenesis, the linear leakage current was
defined as [, ., = e ¥ (V — E,_.,.), Where g, ... 18 the leak

Can you spot the error?




Needle in a Haystack

MATERIALS AND METHODS

Computer simulations. The electrical properties of small sensory
neurons were simulated using the NEURON program (version 7.1)
(Hines and Carnevale 1997). Sodium and potassium conductances in
the present study incorporated parameters described in previous re-
ports (Herzog et al. 2001; Sheets et al. 2007). Conductances were
modeled using Hodgkin and Huxley-type (HH) descriptions (Hodgkin
and Huxley 1952) of the various voltage-dependent currents. For
analysis of theoretical electric charge movements passing though
model sodium channels, we calculated area under the sodium current

ol a5 ot A 0 St aiundtoa A

Passive membrane properties of the model neuron. Action potential
firing was studied using a single compartment cylindrical model of
length 30 wm and radius 23 pwm, simulating a small sensory neuron
with a 2,168 wm? surface area and 20.2 pF/cm?” capacitance, based on
electrically and microscopically measured values (Choi et al. 2007).

Simulations were performed assuming a temperature of 22°C, the
temperature at which the experimental data were recorded (Choi et
al. 2007). The integration method was Backward Euler at an
integration time step df of 0.025 ms. Simulations were performed
assuming free ionic concentrations of sodium ([Na'], = 140 mM;
[Na'], = 10 mM) and potassium ([K "], = 5 mM; [K ], = 140 mM),
which were used to calculate Nernst reversal potentials of +67.1 mV
(Ey.) and —84.7 mV (Ey), respectively. By analogy to the HH model
of action potential electrogenesis, the linear leakage current was
defined as [, ., = e ¥ (V — E,_.,.), Where g, ... 18 the leak

Can you spot the error?



Needle in a Haystack

MATERIALS AND METHODS

Computer simulations. The electrical properties of small sensory
neurons were simulated using the NEURON program (version 7.1)
(Hines and Carnevale 1997). Sodium and potassium conductances in
the present study incorporated parameters described in previous re-
ports (Herzog et al. 2001; Sheets et al. 2007). Conductances were
modeled using Hodgkin and Huxley-type (HH) descriptions (Hodgkin
and Huxley 1952) of the various voltage-dependent currents. For
analysis of theoretical electric charge movements passing though
model sodium channels, we calculated area under the sodium current
using OriginPro 8.1 software (Microcal, Northampton, MA).

Passive membrane properties of the model neuron. Action potential
i eyompartment cylindrical model of
]ength 3{} m and radlus 23 p,m dimulating a small sensory neuron
with a 2,168 wm? surface area and P0.2 pF/cm?® capacitance, based on
ele : ally_measured values (Choi et al. 2007).
The 5pec1ﬁc resistance of the cytosol was set to 123 (/em.
Simulations were performed assuming a temperature of 22°C, the
temperature at which the experimental data were recorded (Choi et
al. 2007). The integration method was Backward Euler at an
integration time step df of 0.025 ms. Simulations were performed
assuming free ionic concentrations of sodium ([Na'], = 140 mM;
[Na'], = 10 mM) and potassium ([K "], = 5 mM; [K ], = 140 mM),
which were used to calculate Nernst reversal potentials of +67.1 mV
(Ey.) and —84.7 mV (Ey), respectively. By analogy to the HH model
of action potential electrogenesis, the linear leakage current was
defined as I,ﬂk g,_eak (V — E,_..), where g,_.. is the leak

Can you spot the error?

23 um refers to the diameter

The area 2,168 um2 does not
Include the ends.
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Why are computational models not
reproducible?

Missing data

Incorrect data (units wrong, values wrong)

Undefined terms/graph axes

Mismatch between text and model

. Wrong model supplied with paper

Only one model supplied but multiple simulations described
Simulation environment no longer available

. Model no longer available (url points to null)

. Model only supplied as a binary
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Replicating Computational Experiments

Laboratory of Genomics, Evolution and Development
Michigan State University

Title: A Reference-Free Algorithm for Computational Normalization of
Shotgun Sequencing Data

C. Titus Brown, Adina Howe, Qingpeng Zhang, Alexis B. Pyrkosz, and Timothy H. Brom

arXiv preprint

Deep shotgun sequencing and analysis of genomes, transcriptomes, amplified single-
cell genomes, and metagenomes has enabled investigation of a wide range of
organisms and ecosystems. However, sampling variation in short-read data sets and
high sequencing error rates of modem seguencers present many new computational
challenges in data interpretation. These challenges have led to the development of
new classes of mapping tools and de novo assemblers. These algorithms are
challenged by the continued improvement in sequencing throughput. We here
describe digital normalization, a single-pass computational algorithm that
systematizes coverage in shotgun sequencing data sets, thereby decreasing
sampling variation, discarding redundant data, and removing the majority of errors.
Digital normalization substantially reduces the size of shotgun data sets and
decreases the memaory and time reguirements for de novo sequence assembly, all
without significantly impacting content of the generated contigs. We apply digital
normalization to the assembly of microbial genomic data, amplified single-cell
genomic data, and transcriptomic data. Our implementation is freely available for use
and modification.

@e resources a@

http://ivory.idyll.org/blog/replication-i.html




Replicating Computational Experiments

Online resources and data:

A tutorial for running khmer on microbial genomes and eukaryotic transcriptomes.

Git repository for khmer: github.com/ged-lab/khmer/tree/2012-paper-diginorm

Git repository for paper & data analysis pipeline: github.com/ged-lab/2012-
paper-diginorm

Instructions on running the paper analysis pipeline & reproducing the paper

HTML view of the ipython notebook containing code and scripts to reproduce the
figures in the paper. (See the pipeline notes for a runnable version.)

Data required to run the pipeline {.tar.gz, 7.9gb)

Assembled microbial genomes and eukaryotic transcriptomes (.tar.gz, 110 mb)

The entire analysis is replicated on a virtual machine using

the same data and software

http://ivory.idyll.org/blog/replication-i.html




Why computational biology isn‘t reproducible

Keeping Critical Information Confidential

Poor training of new scientists
Researchers lack the technological capabilities

Researchers lack the knowledge or time

Researchers lack incentives and journals lack rewards



Why not just use a Programming Language?

Why not use an executable language such as Matlab, Python,
Java etc to exchange and reproduce models?

1. To reproduce a model in a different programming language
it would need to be manually translated to another
language. This can be difficult and error prone.

2. There is no means to share such models because other
groups might use different programming languages

3. Combining such models is extremely difficult.

4. If is difficult to annotate models that use an executable
language.



COMBINE Standards 9

NuML
SBRML

Results

ML | SBGN
Simulation | Visualization

ﬂce“ML FieldML u3|\/||_

pharmML

~tinesron] SBOL”

Model encoding formats

Ontologies Modeling guidelines




SBML in a Nutshell
“Systems Biology Markup Language”

A machine-readable format for representing
computational models in systems biology

Domain: systems of biochemical reactions

Specified using XML

Components in SBML reflect the natural
conceptual constructs of the domain

*Over 200 tools use SBML



SED-ML: Simulation

<sbml xmlns="htip

biomodels.net/b
<model metaid="mctoid dec
<listofrunitDerinitions>

</listOfUnitDefinitions>

<listOfCompartments=
<compartment metaid="neia cell
</compartnent>

</ list0fCompartments>

<listOfSpecies>
<species metaid='
<species metaid='
<species metaid='

</ list0fSpecies>

<listOfReactions>

5" id="

AR

4€
A6
46

<reaction metaid=" 462452" id='

<listOfProducts>

<speciesReference species='

</listOfProducts>
<kineticLaw=

alpha’ name=alpha’ compartment="ce!

dd="betsz
" id="ga

" initialConc
name="hct:' compartment=' c initialConcen*
' name="'ganma' compartment="ccl ' InitialConcs

ri' reversible="7alse’ sboTerm="COO 0D00176">

alpha"/>

<math xmlns='http://www.w3.0rg/1998/Math/Mat

<ci> v_Kml </ei>
</math>
<list0frParameters>
<parameter metaid=" /624
</listOfParancters>
</kineticlaw=
</reaction>
<reaction metaid=" /004°5" id=
<listOfReactants=

<speciesReference species=

</listOfReactants>
<listOfProducts>

<speciesReference species=
</listOfProducts>
<kineticlaw~

<math xmlns="htip //www.wd.c

<apply>

52" dd="v ¥ml" value="0 45" units='"per sec' shoTers

r2" reversible=""al<c' shoTerm="SF( D000170" >

alpha“/>

beta” stoichiometry="50" />

org/1996/Math/MathML">

BIOMDO0000000319 in BioModels Database

From Mike Hucka

Experiment Description ML

Decroly & Goldbeter, PNAS, 1982

Fi6. 4. Trajectories in the phase space (@, B, y) associated with
chaos (a) and with complex periodic behavior (b). The curves corre-
spond to the substrate evolution depicted in Fig. 2 c and d, respectively,
and have been obtained by integration of the kinetic equations from
t = 0-5,000 sec. The ranges of variation of «, 8, and y ina are a =
28.44-50.6, B = 50.05-351.1, and y = 0.05-2.28 and in b are a =
28.18-190.5, 8 = 0.14-604.0, and y = 0.00014—8.8.



SED-ML: Simulation Experiment Description ML

Application-independent format
e Captures procedures, algorithms, parameter values

Can be used for
e Simulation experiments encoding parametrizations & perturbations
e Simulations using more than one model and/or method

e Data manipulations to produce plot(s)

/ "‘\“ A
Model | Al AaAAULAUUULAAR
\y Qo
Task == Data generators A
Simulation i/ ~—
Reports

[ Data ] http://sedml.org J

From Mike Hucka




Multiple Files Make up a Model

A Complete Modeling Story is made of multiple
files:

1. Model (s)

. Simulation setup (s)

Parameter sets (virtual patients)
Diagrams

Raw Data

PDF Documents

. etc

N O U A W



Exchange Format (OMEX)

COMBINE Archive format =

single file that supports exchange
of all information necessary for any
modeling and simulation
experiment

e Not SBML-specific at all

e Not programming-language
specific

e Not domain specific
OMEX = file format for COMBINE Archive

e ZIP file containing manifest file (in XML form) + other files

e Use of ZIP leverages many existing programming libraries

http://co.mbine.org/documents/archive J

From Mike Hucka




All the Pieces EXxist
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Fig.: BioModels Database

Publication: Goldbeter pubmed:1833774

Organism: Human Taxonomy:9606
Compartment: Cell GO:0005623

Model meta-data

M = inactive CDC2 Kinase UniProt:CDK1A XENLA
Fig.: DOI: 10.1038/35002125
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Behavior: Oscillation TEDDY 0000006
Simulation algorithm: Gillespie KiSAO:000029

Simulation / Data

Fig.: DOI: 10.1038/35002125

From Dagmar Waltemath




All the Pieces EXxist

CMN ¥ h3the computational modeling in biology network

Model code

Network of reactions,
entities, compartments

@GN—W_CHQ o
cocs e

Inactive [ active
s TR e

Fig.: BioModels Database

Model meta-data

< GO
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Publication: Goldbeter pubmed:1833774

Organism: Human Taxonomy:9606
Compartment: Cell GO:0005623

M = inactive CDC2 Kinase UniProt:CDK1A XENLA
Simulation / Data

Behavior: Oscillation TEDDY 0000006
Simulation algorithm: Gillespie KiSAO:000029

SMLE

From Dagmar Waltemath

Fig.: DOI: 10.1038/3500
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Possible Solution

Describe a model and how the model is run using a non-
executable language that is independent of the application on
which the model will be run. And then get the community to

agree up upon it.

SBML

\ Executable: MML,
Java, C, Python,
GPUs, etc

=3
CellML




Possible Solution

Describe a model and how the model is run using a non-
executable language that is independent of the application on
which the model will be run. And then get the community to

agree up upon it.

& \ Executable: MML,
Java, C, Python,
TEDDY Ontology

uoiusodwo? [8po

I \‘ How to run the simulation




Possible Solution

Describe a model and how the model is run using a non-
executable language that is independent of the application on
which the model will be run. And then get the community to
agree up upon it.

SBO, Gene, CheEBI, etc Ontologies

4
& \ Executable: MML,
Java, C, Python, Kisao Ontology

GPUs, etc
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\‘ How to run the simulation

TEDDY Ontology



Possible Solution

Describe a model and how the model is run using a non-
executable language that is independent of the application on
which the model will be run. And then get the community to
agree up upon it.

SBO, Gene, CheEBI, etc Ontologies

4
& \ Executable: MML,
Java, C, Python, Kisao Ontology

GPUs, etc .

uoiusodwo? [8po

(diz') 3AIyaIv INIGINOD

\‘ How to run the simulation

TEDDY Ontology w—



The Future

P41 NIH Center for Reproducibility of
Systems and Physiological Models
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Goal: Enhance reproducibility of biomodeling

Data collection (CPs)
Building (TR&D 1)
Annotation (TR&D 2)
Simulation (TR&D 3)

Analysis (TR&D 3)

Application (CPs)

Dissemination (TR&Ds, CPs)




CPs and SPs span numerous applications

Collaborations Tech. Services

Basic science L
Minimal genomes —f_ —_— Basic science
Regulatory networks

Simulation and viz
Multiscale simulation

Human biology
Self renewal

Organs: heart & liver

Medicine
Infection .?

Drug screening

Bioengineering

Genome design

,“\ Human biology
Immunity

Medicine
Alzheimer's disease
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Models

Reproducibility Reusability Validation

Being able to Being able to Being able to show
recreate published reuse published that the model has
simulations models in new credibility.

applications.
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